Chapter 1: Q7E (page 1)
Let A be a \(6 \times 5\) matrix. What must a and b in order to define \(T:{\mathbb{R}^{\bf{a}}} \to {\mathbb{R}^{\bf{b}}}\) by \(T\left( x \right) = Ax\)?
Short Answer
The values must be \(a = 5\) and \(b = 6\).
Chapter 1: Q7E (page 1)
Let A be a \(6 \times 5\) matrix. What must a and b in order to define \(T:{\mathbb{R}^{\bf{a}}} \to {\mathbb{R}^{\bf{b}}}\) by \(T\left( x \right) = Ax\)?
The values must be \(a = 5\) and \(b = 6\).
All the tools & learning materials you need for study success - in one app.
Get started for freeFind the general solutions of the systems whose augmented matrices are given in Exercises 10.
10. \(\left[ {\begin{array}{*{20}{c}}1&{ - 2}&{ - 1}&3\\3&{ - 6}&{ - 2}&2\end{array}} \right]\)
Determine which of the matrices in Exercises 7–12areorthogonal. If orthogonal, find the inverse.
11. \(\left( {\begin{aligned}{{}}{2/3}&{2/3}&{1/3}\\0&{1/3}&{ - 2/3}\\{5/3}&{ - 4/3}&{ - 2/3}\end{aligned}} \right)\)
Let \({{\mathop{\rm a}\nolimits} _1} = \left[ {\begin{array}{*{20}{c}}1\\4\\{ - 2}\end{array}} \right],{{\mathop{\rm a}\nolimits} _2} = \left[ {\begin{array}{*{20}{c}}{ - 2}\\{ - 3}\\7\end{array}} \right],\) and \({\rm{b = }}\left[ {\begin{array}{*{20}{c}}4\\1\\h\end{array}} \right]\). For what values(s) of \(h\) is \({\mathop{\rm b}\nolimits} \) in the plane spanned by \({{\mathop{\rm a}\nolimits} _1}\) and \({{\mathop{\rm a}\nolimits} _2}\)?
Find the general solutions of the systems whose augmented matrices are given as
12. \(\left[ {\begin{array}{*{20}{c}}1&{ - 7}&0&6&5\\0&0&1&{ - 2}&{ - 3}\\{ - 1}&7&{ - 4}&2&7\end{array}} \right]\).
Find all the polynomials of degree[a polynomial of the form] whose graph goes through the points such that [wheredenotes the derivative].
What do you think about this solution?
We value your feedback to improve our textbook solutions.