Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In Exercises 5–8, use the definition of Ax to write the matrixequation as a vector equation, or vice versa.

7. \({x_1}\left[ {\begin{array}{*{20}{c}}4\\{ - 1}\\7\\{ - 4}\end{array}} \right] + {x_2}\left[ {\begin{array}{*{20}{c}}{ - 5}\\3\\{ - 5}\\1\end{array}} \right] + {x_3}\left[ {\begin{array}{*{20}{c}}7\\{ - 8}\\0\\2\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}6\\{ - 8}\\0\\{ - 7}\end{array}} \right]\)

Short Answer

Expert verified

The vector equation \({x_1}\left( {\begin{array}{*{20}{c}}4\\{ - 1}\\7\\{ - 4}\end{array}} \right) + {x_2}\left( {\begin{array}{*{20}{c}}{ - 5}\\3\\{ - 5}\\1\end{array}} \right) + {x_3}\left( {\begin{array}{*{20}{c}}7\\{ - 8}\\0\\2\end{array}} \right) = \left( {\begin{array}{*{20}{c}}6\\{ - 8}\\0\\{ - 7}\end{array}} \right)\)in a matrix equation is written as \(\left( {\begin{array}{*{20}{c}}4&{ - 5}&7\\{ - 1}&3&{ - 8}\\7&{ - 5}&0\\{ - 4}&1&2\end{array}} \right)\left( {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\\{{x_3}}\end{array}} \right) = \left( {\begin{array}{*{20}{c}}6\\{ - 8}\\0\\{ - 7}\end{array}} \right)\).

Step by step solution

01

Write the definition of \(A{\bf{x}}\)

It is known that the column of matrix \(A\) is represented as \(\left( {\begin{array}{*{20}{c}}{{a_1}}&{{a_2}}&{ \cdot \cdot \cdot }&{{a_n}}\end{array}} \right)\), and vector x is represented as \(\left( {\begin{array}{*{20}{c}}{{x_1}}\\ \vdots \\{{x_n}}\end{array}} \right)\).

According to the definition, the weights in a linear combination of matrix A columns are represented by the entries in vector x.

\({x_1}{a_1} + {x_2}{a_2} + \cdots + {x_n}{a_n} = A{\bf{x}}\)

The left-hand side \({x_1}{a_1} + {x_2}{a_2} + \cdots + {x_n}{a_n}\) of the above equation is a linear combination of vectors \({x_1},{x_2},...,{x_n}\).

Thus, the vector equation in the matrix form is written as:

\(A{\bf{x}} = \left( {\begin{array}{*{20}{c}}{{a_1}}&{{a_2}}&{ \cdot \cdot \cdot }&{{a_n}}\end{array}} \right)\left( {\begin{array}{*{20}{c}}{{x_1}}\\ \vdots \\{{x_n}}\end{array}} \right) = b\)

The number of columns in matrix\(A\)should be equal to the number of entries in vector x so that \(A{\bf{x}}\) can be defined.

02

Obtain the columns of the matrix

Compare the given vector equation form \({x_1}\left( {\begin{array}{*{20}{c}}4\\{ - 1}\\7\\{ - 4}\end{array}} \right) + {x_2}\left( {\begin{array}{*{20}{c}}{ - 5}\\3\\{ - 5}\\1\end{array}} \right) + {x_3}\left( {\begin{array}{*{20}{c}}7\\{ - 8}\\0\\2\end{array}} \right) = \left( {\begin{array}{*{20}{c}}6\\{ - 8}\\0\\{ - 7}\end{array}} \right)\)with the general equation \({x_1}{a_1} + {x_2}{a_2} + \cdots + {x_n}{a_n} = A{\bf{x}}\) form.

So, \({{\bf{a}}_1} = \left( {\begin{array}{*{20}{c}}4\\{ - 1}\\7\\{ - 4}\end{array}} \right)\), \({{\bf{a}}_2} = \left( {\begin{array}{*{20}{c}}{ - 5}\\3\\{ - 5}\\1\end{array}} \right)\), \({{\bf{a}}_3} = \left( {\begin{array}{*{20}{c}}7\\{ - 8}\\0\\2\end{array}} \right)\), and \(A{\bf{x}} = b = \left( {\begin{array}{*{20}{c}}6\\{ - 8}\\0\\{ - 7}\end{array}} \right)\).

It shows that the equation is a linear combination of three vectors \({x_1}\), \({x_2}\), and \({x_3}\).

03

Write matrix Aand vector x

According to the definition,the number of columns in matrix\(A\)should be equal to the number of entries in vector x so that \(A{\bf{x}}\) can be defined.

Write matrix A using three columns \({{\bf{a}}_1} = \left( {\begin{array}{*{20}{c}}4\\{ - 1}\\7\\{ - 4}\end{array}} \right)\), \({{\bf{a}}_2} = \left( {\begin{array}{*{20}{c}}{ - 5}\\3\\{ - 5}\\1\end{array}} \right)\), and\({{\bf{a}}_3} = \left( {\begin{array}{*{20}{c}}7\\{ - 8}\\0\\2\end{array}} \right)\) and vector x using three entries \({x_1}\), \({x_2}\), and \({x_3}\).

So, \(A = \left( {\begin{array}{*{20}{c}}{\left( {\begin{array}{*{20}{c}}4\\{ - 1}\\7\\{ - 4}\end{array}} \right)}&{\left( {\begin{array}{*{20}{c}}{ - 5}\\3\\{ - 5}\\1\end{array}} \right)}&{\left( {\begin{array}{*{20}{c}}7\\{ - 8}\\0\\2\end{array}} \right)}\end{array}} \right)\), and \({\bf{x}} = \left( {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\\{{x_3}}\end{array}} \right)\).

04

Write the vector equation into a matrix equation

By using matrix \(A = \left( {\begin{array}{*{20}{c}}{\left( {\begin{array}{*{20}{c}}4\\{ - 1}\\7\\{ - 4}\end{array}} \right)}&{\left( {\begin{array}{*{20}{c}}{ - 5}\\3\\{ - 5}\\1\end{array}} \right)}&{\left( {\begin{array}{*{20}{c}}7\\{ - 8}\\0\\2\end{array}} \right)}\end{array}} \right)\), and vector \({\bf{x}} = \left( {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\\{{x_3}}\end{array}} \right)\), the matrix equation can be written as shown below:

\(\left( {\begin{array}{*{20}{c}}4&{ - 5}&7\\{ - 1}&3&{ - 8}\\7&{ - 5}&0\\{ - 4}&1&2\end{array}} \right)\left( {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\\{{x_3}}\end{array}} \right) = \left( {\begin{array}{*{20}{c}}6\\{ - 8}\\0\\{ - 7}\end{array}} \right)\)

Thus, the vector equation \({x_1}\left( {\begin{array}{*{20}{c}}4\\{ - 1}\\7\\{ - 4}\end{array}} \right) + {x_2}\left( {\begin{array}{*{20}{c}}{ - 5}\\3\\{ - 5}\\1\end{array}} \right) + {x_3}\left( {\begin{array}{*{20}{c}}7\\{ - 8}\\0\\2\end{array}} \right) = \left( {\begin{array}{*{20}{c}}6\\{ - 8}\\0\\{ - 7}\end{array}} \right)\)can be written as a matrix equation as \(\left( {\begin{array}{*{20}{c}}4&{ - 5}&7\\{ - 1}&3&{ - 8}\\7&{ - 5}&0\\{ - 4}&1&2\end{array}} \right)\left( {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\\{{x_3}}\end{array}} \right) = \left( {\begin{array}{*{20}{c}}6\\{ - 8}\\0\\{ - 7}\end{array}} \right)\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Write the vector \(\left( {\begin{array}{*{20}{c}}5\\6\end{array}} \right)\) as the sum of two vectors, one on the line \(\left\{ {\left( {x,y} \right):y = {\bf{2}}x} \right\}\) and one on the line \(\left\{ {\left( {x,y} \right):y = x/{\bf{2}}} \right\}\).

Determine the value(s) of \(a\) such that \(\left\{ {\left( {\begin{aligned}{*{20}{c}}1\\a\end{aligned}} \right),\left( {\begin{aligned}{*{20}{c}}a\\{a + 2}\end{aligned}} \right)} \right\}\) is linearly independent.

In Exercises 31, find the elementary row operation that transforms the first matrix into the second, and then find the reverse row operation that transforms the second matrix into the first.

31. \(\left[ {\begin{array}{*{20}{c}}1&{ - 2}&1&0\\0&5&{ - 2}&8\\4&{ - 1}&3&{ - 6}\end{array}} \right]\), \(\left[ {\begin{array}{*{20}{c}}1&{ - 2}&1&0\\0&5&{ - 2}&8\\0&7&{ - 1}&{ - 6}\end{array}} \right]\)

Solve the linear system of equations. You may use technology.

|3x+5y+3z=257X+9y+19z=654X+5y+11z=5|

Let \(T:{\mathbb{R}^n} \to {\mathbb{R}^n}\) be an invertible linear transformation, and let Sand U be functions from \({\mathbb{R}^n}\) into \({\mathbb{R}^n}\) such that \(S\left( {T\left( {\mathop{\rm x}\nolimits} \right)} \right) = {\mathop{\rm x}\nolimits} \) and \(\)\(U\left( {T\left( {\mathop{\rm x}\nolimits} \right)} \right) = {\mathop{\rm x}\nolimits} \) for all x in \({\mathbb{R}^n}\). Show that \(U\left( v \right) = S\left( v \right)\) for all v in \({\mathbb{R}^n}\). This will show that Thas a unique inverse, as asserted in theorem 9. (Hint: Given any v in \({\mathbb{R}^n}\), we can write \({\mathop{\rm v}\nolimits} = T\left( {\mathop{\rm x}\nolimits} \right)\) for some x. Why? Compute \(S\left( {\mathop{\rm v}\nolimits} \right)\) and \(U\left( {\mathop{\rm v}\nolimits} \right)\)).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free