Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In Exercises 3–6, with T defined by \(T\left( {\bf{x}} \right) = A{\bf{x}}\), find a vector x whose image under T is b, and determine whether x is unique.

6. \(A = \left[ {\begin{array}{*{20}{c}}1&{ - 2}&1\\3&{ - 4}&5\\0&1&1\\{ - 3}&5&{ - 4}\end{array}} \right]\), \({\bf{b}} = \left[ {\begin{array}{*{20}{c}}1\\9\\3\\{ - 6}\end{array}} \right]\)

Short Answer

Expert verified

Vector \({\bf{x}} = \left[ {\begin{array}{*{20}{c}}7\\3\\0\end{array}} \right] + {x_3}\left[ {\begin{array}{*{20}{c}}{ - 3}\\{ - 1}\\1\end{array}} \right]\), and the solution is not unique.

Step by step solution

01

Write the concept for computing images under the transformation of vectors

The multiplication of matrix\(A\)of the order\(m \times n\)and vector x gives a new vector defined as\(A{\bf{x}}\)or b.

This concept is defined by the rule of transformation \(T\left( {\bf{x}} \right)\). The matrix transformation is denoted as \({\bf{x}}| \to A{\bf{x}}\).

02

Obtain the augmented matrix

Consider the transformation\(T\left( {\bf{x}} \right) = A{\bf{x}} = b\).

So,\(T\left( {\bf{x}} \right) = A{\bf{x}} = b\)can be represented as shown below:

\(\left[ {\begin{array}{*{20}{c}}1&{ - 2}&1\\3&{ - 4}&5\\0&1&1\\{ - 3}&5&{ - 4}\end{array}} \right]\left[ {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\\{{x_3}}\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}1\\9\\3\\{ - 6}\end{array}} \right]\)

Write the augmented matrix\(\left[ {\begin{array}{*{20}{c}}A&{\bf{b}}\end{array}} \right]\)as shown below:

\(\left[ {\begin{array}{*{20}{c}}1&{ - 2}&1&1\\3&{ - 4}&5&9\\0&1&1&3\\{ - 3}&5&{ - 4}&{ - 6}\end{array}} \right]\)

03

Convert the augmented matrix into the row-reduced echelon form

Use the \(3{x_1}\) term from the second equation to eliminate the \( - 3{x_1}\) term from the fourth equation. Add \(3\) times row two to row four.

\(\left[ {\begin{array}{*{20}{c}}1&{ - 2}&1&1\\3&{ - 4}&5&9\\0&1&1&3\\0&1&1&3\end{array}} \right]\)

Use the \({x_1}\) term from the first equation to eliminate the \(3{x_1}\) term from the second equation. Add \( - 3\) times row one to row two.

\(\left[ {\begin{array}{*{20}{c}}1&{ - 2}&1&1\\3&{ - 4}&5&9\\0&1&1&3\\0&1&1&3\end{array}} \right] \sim \left[ {\begin{array}{*{20}{c}}1&{ - 2}&1&1\\0&2&2&6\\0&1&1&3\\0&1&1&3\end{array}} \right]\)

04

Convert the augmented matrix into the row-reduced echelon form

Multiply row two by \(\frac{1}{2}\).

\(\left[ {\begin{array}{*{20}{c}}1&{ - 2}&1&1\\0&1&1&3\\0&1&1&3\\0&1&1&3\end{array}} \right]\)

Use the \({x_2}\) term from the second equation to eliminate the \({x_2}\) term from the third equation. Add \( - 1\) times row two to row three.

\(\left[ {\begin{array}{*{20}{c}}1&{ - 2}&1&1\\0&1&1&3\\0&1&1&3\\0&1&1&3\end{array}} \right] \sim \left[ {\begin{array}{*{20}{c}}1&{ - 2}&1&1\\0&1&1&3\\0&0&0&0\\0&1&1&3\end{array}} \right]\)

Use the \({x_2}\) term from the second equation to eliminate the \({x_2}\) term from the fourth equation. Add \( - 1\) times row two to row four.

\(\left[ {\begin{array}{*{20}{c}}1&{ - 2}&1&1\\0&1&1&3\\0&0&0&0\\0&1&1&3\end{array}} \right] \sim \left[ {\begin{array}{*{20}{c}}1&{ - 2}&1&1\\0&1&1&3\\0&0&0&0\\0&0&0&0\end{array}} \right]\)

Use the \({x_2}\) term from the second equation to eliminate the \( - 2{x_2}\) term from the first equation. Add 2 times row two to row one.

\(\left[ {\begin{array}{*{20}{c}}1&{ - 2}&1&1\\0&1&1&3\\0&0&0&0\\0&0&0&0\end{array}} \right] \sim \left[ {\begin{array}{*{20}{c}}1&0&3&7\\0&1&1&3\\0&0&0&0\\0&0&0&0\end{array}} \right]\)

05

Convert the matrix into an equation

To obtain the solution, convert the augmented matrix into the system of equations.

Write the obtained matrix, \(\left[ {\begin{array}{*{20}{c}}1&0&3&7\\0&1&1&3\\0&0&0&0\\0&0&0&0\end{array}} \right]\),in the equation notation.

\(\begin{array}{c}{x_1} + 0\left( {{x_2}} \right) + 3{x_3} = 7\\0\left( {{x_1}} \right) + {x_2} + {x_3} = 3\end{array}\)

06

Separate the variables into free and basic types

From the above equations, \({x_1}\) and \({x_2}\) are the pivot positions. So, \({x_1}\) and \({x_2}\) are basic variables, and \({x_3}\) is a free variable.

Let, \({x_3} = t\).

07

Obtain the values of basic variables in the parametric form

Substitute the value \({x_3} = t\) in the equation \({x_1} + 3{x_3} = 7\) to obtain the general solution.

\(\begin{aligned}{c}{x_1} + 3\left( t \right) &= 7\\{x_1} &= 7 - 3t\end{aligned}\)

Substitute the value \({x_3} = t\) in the equation \({x_2} + {x_3} = 3\) to obtain the general solution.

\(\begin{aligned}{c}{x_2} + \left( t \right) &= 3\\{x_2} &= 3 - t\end{aligned}\)

08

Write the solution in the parametric form

Obtain the vector in the parametric form by using \({x_1} = 7 - 3t\), \({x_2} = 3 - t\), and \({x_3} = t\).

\(\begin{aligned}{c}\left[ {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\\{{x_3}}\end{array}} \right] &= \left[ {\begin{array}{*{20}{c}}{7 - 3t}\\{3 - t}\\t\end{array}} \right]\\ &= \left[ {\begin{array}{*{20}{c}}7\\3\\0\end{array}} \right] + \left[ {\begin{array}{*{20}{c}}{ - 3t}\\{ - t}\\t\end{array}} \right]\\ &= \left[ {\begin{array}{*{20}{c}}7\\3\\0\end{array}} \right] + t\left[ {\begin{array}{*{20}{c}}{ - 3}\\{ - 1}\\1\end{array}} \right]\end{aligned}\)

Or it can be written as \(\left[ {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\\{{x_3}}\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}7\\3\\0\end{array}} \right] + t\left[ {\begin{array}{*{20}{c}}{ - 3}\\{ - 1}\\1\end{array}} \right]\).

So, the solution in the parametric vector form is \(\left[ {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\\{{x_3}}\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}7\\3\\0\end{array}} \right] + {x_3}\left[ {\begin{array}{*{20}{c}}{ - 3}\\{ - 1}\\1\end{array}} \right]\).

This solution is not unique.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free