In the echelon form, at the top of the left-most column, the leading entry should be non-zero.
Interchange rows one and four.
\(\left[ {\begin{array}{*{20}{c}}0&{ - 8}&5&0\\3&{ - 7}&4&0\\{ - 1}&5&{ - 4}&0\\1&{ - 3}&2&0\end{array}} \right] \sim \left[ {\begin{array}{*{20}{c}}1&{ - 3}&2&0\\3&{ - 7}&4&0\\{ - 1}&5&{ - 4}&0\\0&{ - 8}&5&0\end{array}} \right]\)
Add \( - 3\) times row one to row two to eliminate the \(3{x_1}\) term from the second equation. Add rows one and three to eliminate the \({x_1}\) term from the third equation.
\(\left[ {\begin{array}{*{20}{c}}1&{ - 3}&2&0\\3&{ - 7}&4&0\\{ - 1}&5&{ - 4}&0\\0&{ - 8}&5&0\end{array}} \right] \sim \left[ {\begin{array}{*{20}{c}}1&{ - 3}&2&0\\0&2&{ - 2}&0\\0&2&{ - 2}&0\\0&{ - 8}&5&0\end{array}} \right]\)
Add \( - 1\) time row two to row three to eliminate the \( - {x_1}\) term from the third equation. Add \( - 4\) times row two to row four to eliminate the \( - 8{x_2}\) term from the fourth equation. Interchange rows three and four.
\(\left[ {\begin{array}{*{20}{c}}1&{ - 3}&2&0\\0&2&{ - 2}&0\\0&0&0&0\\0&0&{ - 3}&0\end{array}} \right] \sim \left[ {\begin{array}{*{20}{c}}1&{ - 3}&2&0\\0&2&{ - 2}&0\\0&0&{ - 3}&0\\0&0&0&0\end{array}} \right]\)
Multiply row two by \(\frac{1}{2}\) and row three by \( - \frac{1}{3}\).
\(\left[ {\begin{array}{*{20}{c}}1&0&2&0\\0&1&0&0\\0&0&1&0\\0&0&0&0\end{array}} \right]\)
Add \( - 2\) times row three to row one to eliminate the \(2{x_3}\) term from the first equation.
\(\left[ {\begin{array}{*{20}{c}}1&0&0&0\\0&1&0&0\\0&0&1&0\\0&0&0&0\end{array}} \right]\)