Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In Exercise 5, write a matrix equation that determines the loop currents. [M] If MATLAB or another matrix program is available, solve the system for the loop currents.

Short Answer

Expert verified

The matrix equation is

\[\begin{array}{c}Ri = v\\\left[ {\begin{array}{*{20}{c}}{11}&{ - 5}&0&0\\{ - 5}&{10}&{ - 1}&0\\0&{ - 1}&9&{ - 2}\\0&0&{ - 2}&{10}\end{array}} \right]\left[ {\begin{array}{*{20}{c}}{{I_1}}\\{I{ & _2}}\\{{I_3}}\\{{I_4}}\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}{50}\\{ - 40}\\{30}\\{ - 30}\end{array}} \right]\end{array}\].

And its solution is \[i = \left[ {\begin{array}{*{20}{c}}{3.68}\\{ - 1.9}\\{2.57}\\{ - 2.49}\end{array}} \right]\].

Step by step solution

01

Write the equation for each loop

In loop 1, apply Ohm’s law as

\[{I_1} + 5{I_1} + 4{I_1} + {I_1} = 11{I_1}\].

In loop 2, apply the voltage law as

\[11{I_1} - 5{I_2} = 50\].

In loop 2, apply the current law as

\[ - 5{I_1} + 10{I_2} - {I_3} = - 40\].

In loop 3, apply the current law as

\[ - {I_2} + 9{I_3} - 2{I_4} = 30\].

In loop 4, apply the current law as

\[ - 2{I_3} + 10{I_4} = - 30\].

02

Write the matrix equation

The matrix equation of the above system is

\[\left[ {\begin{array}{*{20}{c}}{11}&{ - 5}&0&0\\{ - 5}&{10}&{ - 1}&0\\0&{ - 1}&9&{ - 2}\\0&0&{ - 2}&{10}\end{array}} \right]\left[ {\begin{array}{*{20}{c}}{{I_1}}\\{I{ & _2}}\\{{I_3}}\\{{I_4}}\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}{50}\\{ - 40}\\{30}\\{ - 30}\end{array}} \right]\].

That is \[Ri = v\].

03

Solve the system

Use the following MATLAB command to obtain the reduced row echelon form of R:

\[\begin{array}{l} \gg {\rm{R}} = \left[ {11\,\, - 5\,\,\,0\,\,0;\,\, - 5\,\,10\,\, - 1\,\,0;\,\,\,0\,\, - 1\,\,9\,\, - 2;\,\,0\,\,0\,\, - 2\,\,10} \right];\\ \gg {\rm{rref}}\left( {\rm{R}} \right)\end{array}\]

\[R = \left[ {\begin{array}{*{20}{c}}{11}&{ - 5}&0&0&{50}\\{ - 5}&{10}&{ - 1}&0&{ - 40}\\0&{ - 1}&9&{ - 2}&{30}\\0&0&{ - 2}&{10}&{ - 30}\end{array}} \right] \sim \left[ {\begin{array}{*{20}{c}}1&0&0&0&{\frac{{265}}{{72}}}\\0&1&0&0&{ - \frac{{137}}{{72}}}\\0&0&1&0&{\frac{{185}}{{72}}}\\0&0&0&1&{ - \frac{{179}}{{72}}}\end{array}} \right]\]

Hence the loop currents are \[{I_1} = \frac{{265}}{{72}} \approx 3.68,{I_2} = - \frac{{137}}{{72}} \approx - 1.9,{I_3} = \frac{{185}}{{72}} \approx 2.57,\] and \[{I_4} = - \frac{{179}}{{72}} \approx - 2.49\]. That is,

\[i = \left[ {\begin{array}{*{20}{c}}{3.68}\\{ - 1.9}\\{2.57}\\{ - 2.49}\end{array}} \right]\].

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free