Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In Exercises 3 and 4, display the following vectors using arrows

on an \(xy\)-graph: u, v, \( - {\bf{v}}\), \( - 2{\bf{v}}\), u + v , u - v, and u - 2v. Notice that u - vis the vertex of a parallelogram whose other vertices are u, 0, and \( - {\bf{v}}\).

4. u and v as in Exercise 2

Short Answer

Expert verified

The graph of the vectors is shown below:

Step by step solution

01

Write the vectors u, v, \( - {\bf{v}}\), and \( - 2{\bf{v}}\)

From Exercise 1, the vectors are\(u = \left[ {\begin{array}{*{20}{c}}3\\2\end{array}} \right]\),and \(v = \left[ {\begin{array}{*{20}{c}}2\\{ - 1}\end{array}} \right]\).

Vector \( - v\)can be written as\(\left( { - 1} \right)v\).

Obtain the scalar multiple of vector \(v\)by scalar \(\left( { - 1} \right)\) to compute vector \( - v\).

\(\begin{aligned}{c}\left( { - 1} \right)v &= \left( { - 1} \right)\left[ {\begin{array}{*{20}{c}}2\\{ - 1}\end{array}} \right]\\ &= \left[ {\begin{array}{*{20}{c}}{\left( { - 1} \right)\left( 2 \right)}\\{\left( { - 1} \right)\left( { - 1} \right)}\end{array}} \right]\\ &= \left[ {\begin{array}{*{20}{c}}{ - 2}\\1\end{array}} \right]\end{aligned}\)

Thus, \( - v = \left[ {\begin{array}{*{20}{c}}{ - 2}\\1\end{array}} \right]\).

Vector \( - 2v\)can be written as\(\left( { - 2} \right)v\).

Obtain the scalar multiple of vector \(v\)by scalar \(\left( { - 2} \right)\) to compute vector \( - 2v\).

\(\begin{aligned}{c}\left( { - 2} \right)v &= \left( { - 2} \right)\left[ {\begin{array}{*{20}{c}}2\\{ - 1}\end{array}} \right]\\ &= \left[ {\begin{array}{*{20}{c}}{\left( { - 2} \right)\left( 2 \right)}\\{\left( { - 2} \right)\left( { - 1} \right)}\end{array}} \right]\\ &= \left[ {\begin{array}{*{20}{c}}{ - 4}\\2\end{array}} \right]\end{aligned}\)

Thus, \( - 2v = \left[ {\begin{array}{*{20}{c}}{ - 4}\\2\end{array}} \right]\).

02

Write vectors u + v , and u - v

Obtain vector \(u + v\)by using vectors \(u = \left[ {\begin{array}{*{20}{c}}3\\2\end{array}} \right]\),and \(v = \left[ {\begin{array}{*{20}{c}}2\\{ - 1}\end{array}} \right]\).

\(\begin{aligned}{c}u + v &= \left[ {\begin{array}{*{20}{c}}3\\2\end{array}} \right] + \left[ {\begin{array}{*{20}{c}}2\\{ - 1}\end{array}} \right]\\ &= \left[ {\begin{array}{*{20}{c}}{3 + \left( 2 \right)}\\{2 + \left( { - 1} \right)}\end{array}} \right]\\ &= \left[ {\begin{array}{*{20}{c}}{3 + 2}\\{2 - 1}\end{array}} \right]\\ &= \left[ {\begin{array}{*{20}{c}}5\\1\end{array}} \right]\end{aligned}\)

Thus, the vector is \(u + v = \left[ {\begin{array}{*{20}{c}}5\\1\end{array}} \right]\).

Obtain vector \(u - v\)by using vectors \(u = \left[ {\begin{array}{*{20}{c}}3\\2\end{array}} \right]\),and \(v = \left[ {\begin{array}{*{20}{c}}2\\{ - 1}\end{array}} \right]\).

\(\begin{aligned}{c}u - v &= \left[ {\begin{array}{*{20}{c}}3\\2\end{array}} \right] - \left[ {\begin{array}{*{20}{c}}2\\{ - 1}\end{array}} \right]\\ &= \left[ {\begin{array}{*{20}{c}}{3 - \left( 2 \right)}\\{2 - \left( { - 1} \right)}\end{array}} \right]\\ &= \left[ {\begin{array}{*{20}{c}}{3 - 2}\\{2 + 1}\end{array}} \right]\\ &= \left[ {\begin{array}{*{20}{c}}1\\3\end{array}} \right]\end{aligned}\)

Thus, the vector is \(u - v = \left[ {\begin{array}{*{20}{c}}1\\3\end{array}} \right]\).

03

Compute vector \(u - 2v\)

Vector \(u - 2v\)can be written as\(u + \left( { - 2} \right)v\).

Obtain the scalar multiple of vector \(v\)by scalar \(\left( { - 2} \right)\), and then add the resultant vector with vector \(u\).

\(\begin{aligned}{c}u + \left( { - 2} \right)v &= \left[ {\begin{array}{*{20}{c}}3\\2\end{array}} \right] + \left( { - 2} \right)\left[ {\begin{array}{*{20}{c}}2\\{ - 1}\end{array}} \right]\\ &= \left[ {\begin{array}{*{20}{c}}3\\2\end{array}} \right] + \left[ {\begin{array}{*{20}{c}}{\left( { - 2} \right)\left( 2 \right)}\\{\left( { - 2} \right)\left( { - 1} \right)}\end{array}} \right]\\ &= \left[ {\begin{array}{*{20}{c}}3\\2\end{array}} \right] + \left[ {\begin{array}{*{20}{c}}{ - 4}\\2\end{array}} \right]\\ &= \left[ {\begin{array}{*{20}{c}}{3 - 4}\\{2 + 2}\end{array}} \right]\end{aligned}\)

Solve further to get:

\(u + \left( { - 2} \right)v = \left[ {\begin{array}{*{20}{c}}{ - 1}\\4\end{array}} \right]\)

Thus, \(u - 2v = \left[ {\begin{array}{*{20}{c}}{ - 1}\\4\end{array}} \right]\).

04

Display the vectors on a graph

The graph of vectors \(u = \left[ {\begin{array}{*{20}{c}}3\\2\end{array}} \right]\), \(v = \left[ {\begin{array}{*{20}{c}}2\\{ - 1}\end{array}} \right]\), \( - v = \left[ {\begin{array}{*{20}{c}}{ - 2}\\1\end{array}} \right]\), \( - 2v = \left[ {\begin{array}{*{20}{c}}{ - 4}\\2\end{array}} \right]\), \(u - v = \left[ {\begin{array}{*{20}{c}}1\\3\end{array}} \right]\), \(u + v = \left[ {\begin{array}{*{20}{c}}5\\1\end{array}} \right]\), and \(u - 2v = \left[ {\begin{array}{*{20}{c}}{ - 1}\\4\end{array}} \right]\) using arrows are shown below:

Thus, the graph of the vectors is obtained.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In (a) and (b), suppose the vectors are linearly independent. What can you say about the numbers \(a,....,f\) ? Justify your answers. (Hint: Use a theorem for (b).)

  1. \(\left( {\begin{aligned}{*{20}{c}}a\\0\\0\end{aligned}} \right),\left( {\begin{aligned}{*{20}{c}}b\\c\\d\end{aligned}} \right),\left( {\begin{aligned}{*{20}{c}}d\\e\\f\end{aligned}} \right)\)
  2. \(\left( {\begin{aligned}{*{20}{c}}a\\1\\0\\0\end{aligned}} \right),\left( {\begin{aligned}{*{20}{c}}b\\c\\1\\0\end{aligned}} \right),\left( {\begin{aligned}{*{20}{c}}d\\e\\f\\1\end{aligned}} \right)\)

Determine whether the statements that follow are true or false, and justify your answer.

18: [111315171921][-13-1]=[131921]

Suppose \(a,b,c,\) and \(d\) are constants such that \(a\) is not zero and the system below is consistent for all possible values of \(f\) and \(g\). What can you say about the numbers \(a,b,c,\) and \(d\)? Justify your answer.

28. \(\begin{array}{l}a{x_1} + b{x_2} = f\\c{x_1} + d{x_2} = g\end{array}\)

In Exercise 2, compute \(u + v\) and \(u - 2v\).

2. \(u = \left[ {\begin{array}{*{20}{c}}3\\2\end{array}} \right]\), \(v = \left[ {\begin{array}{*{20}{c}}2\\{ - 1}\end{array}} \right]\).

An important concern in the study of heat transfer is to determine the steady-state temperature distribution of a thin plate when the temperature around the boundary is known. Assume the plate shown in the figure represents a cross section of a metal beam, with negligible heat flow in the direction perpendicular to the plate. Let \({T_1},...,{T_4}\) denote the temperatures at the four interior nodes of the mesh in the figure. The temperature at a node is approximately equal to the average of the four nearest nodesโ€”to the left, above, to the right, and below. For instance,

\({T_1} = \left( {10 + 20 + {T_2} + {T_4}} \right)/4\), or \(4{T_1} - {T_2} - {T_4} = 30\)

33. Write a system of four equations whose solution gives estimates

for the temperatures \({T_1},...,{T_4}\).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free