a.
Compute the product of \(\left[ {\begin{array}{*{20}{c}}8&3&{ - 4}\\5&1&2\end{array}} \right]\left[ {\begin{array}{*{20}{c}}1\\1\\1\end{array}} \right]\) using the definition as shown below:
\(\begin{aligned}{c}\left[ {\begin{array}{*{20}{c}}8&3&{ - 4}\\5&1&2\end{array}} \right]\left[ {\begin{array}{*{20}{c}}1\\1\\1\end{array}} \right] &= 1\left[ {\begin{array}{*{20}{c}}8\\5\end{array}} \right] + 1\left[ {\begin{array}{*{20}{c}}3\\1\end{array}} \right] + 1\left[ {\begin{array}{*{20}{c}}{ - 4}\\2\end{array}} \right]\\ &= \left[ {\begin{array}{*{20}{c}}8\\5\end{array}} \right] + \left[ {\begin{array}{*{20}{c}}3\\1\end{array}} \right] + \left[ {\begin{array}{*{20}{c}}{ - 4}\\2\end{array}} \right]\\ &= \left[ {\begin{array}{*{20}{c}}{8 + 3 - 4}\\{5 + 1 + 2}\end{array}} \right]\\ &= \left[ {\begin{array}{*{20}{c}}7\\8\end{array}} \right]\end{aligned}\)
b.
Now, compute the value of \(A{\bf{x}}\) by using the row-vector rule as shown below:
\(\begin{aligned}{c}\left[ {\begin{array}{*{20}{c}}8&3&{ - 4}\\5&1&2\end{array}} \right]\left[ {\begin{array}{*{20}{c}}1\\1\\1\end{array}} \right] &= \left[ {\begin{array}{*{20}{c}}{8 \cdot 1 + 3 \cdot 1 + \left( { - 4} \right) \cdot 1}\\{5 \cdot 1 + 1 \cdot 1 + 2 \cdot 1}\end{array}} \right]\\ &= \left[ {\begin{array}{*{20}{c}}{8 + 3 - 4}\\{5 + 1 + 2}\end{array}} \right]\\ &= \left[ {\begin{array}{*{20}{c}}7\\8\end{array}} \right]\end{aligned}\)
Thus, the product is \(\left[ {\begin{array}{*{20}{c}}7\\8\end{array}} \right]\).