Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Some matrix programs, such as MATLAB, have a command to create Hilbert matrices of various sizes. If possible, use an inverse command to compute the inverse of a twelfth-order or larger Hilbert matrix, A. Compute \(A{A^{ - 1}}\). Report what you find.

Short Answer

Expert verified

The output matrix is an identity matrix.

Step by step solution

01

Create a Hilbert matrix of large size

Use the MATLAB command to create theHilbert matrix of size\(12 \times 12\).

\( > > {\rm{A}} = {\rm{hilb}}\left( {12} \right)\)

\(\left( {\begin{aligned}{*{20}{c}}{1.000}&{0.500}&{0.333}&{0.250}&{0.200}&{0.167}&{0.143}&{0.125}&{0.111}&{0.100}&{0.091}&{0.083}\\{0.500}&{0.333}&{0.250}&{0.200}&{0.167}&{0.143}&{0.125}&{0.111}&{0.100}&{0.091}&{0.083}&{0.077}\\{0.333}&{0.250}&{0.200}&{0.167}&{0.143}&{0.125}&{0.111}&{0.100}&{0.091}&{0.083}&{0.077}&{0.071}\\{0.250}&{0.200}&{0.167}&{0.143}&{0.125}&{0.111}&{0.100}&{0.091}&{0.083}&{0.077}&{0.071}&{0.067}\\{0.200}&{0.167}&{0.143}&{0.125}&{0.111}&{0.100}&{0.091}&{0.083}&{0.077}&{0.071}&{0.067}&{0.063}\\{0.167}&{0.143}&{0.125}&{0.111}&{0.100}&{0.091}&{0.083}&{0.077}&{0.071}&{0.067}&{0.063}&{0.059}\\{0.143}&{0.125}&{0.111}&{0.100}&{0.091}&{0.083}&{0.077}&{0.071}&{0.067}&{0.063}&{0.059}&{0.056}\\{0.125}&{0.111}&{0.100}&{0.091}&{0.083}&{0.077}&{0.071}&{0.067}&{0.063}&{0.059}&{0.056}&{0.053}\\{0.111}&{0.100}&{0.091}&{0.083}&{0.077}&{0.071}&{0.067}&{0.063}&{0.059}&{0.056}&{0.053}&{0.050}\\{0.100}&{0.091}&{0.083}&{0.077}&{0.071}&{0.067}&{0.063}&{0.059}&{0.056}&{0.053}&{0.050}&{0.048}\\{0.091}&{0.083}&{0.077}&{0.071}&{0.067}&{0.063}&{0.059}&{0.056}&{0.053}&{0.050}&{0.048}&{0.045}\\{0.083}&{0.077}&{0.071}&{0.067}&{0.063}&{0.059}&{0.056}&{0.053}&{0.050}&{0.048}&{0.045}&{0.043}\end{aligned}} \right)\)

02

Obtain the inverse of matrix A

Compute theinverse of matrix A by using the MATLAB command shown below:

\( > > B = {\rm{A}}\^ - 1\)

\(\left( {\begin{aligned}{*{20}{c}}{1.41e + 02}&{ - 9.93e + 05}&{2.29e + 05}&{ - 2.54e + 06}&{1.61e + 07}&{ - 6.35e + 07}&{1.62e + 08}\\{ - 9.93e + 03}&{9.35e + 05}&{ - 2.43e + 07}&{2.89e + 08}&{ - 1.91e + 09}&{7.76e + 09}&{ - 2.03e + 10}\\{2.29e + 05}&{ - 2.43e + 07}&{6.75e + 08}&{ - 8.38e + 09}&{5.72e + 10}&{ - 2.37e + 11}&{6.29e + 11}\\{ - 2.54e + 06}&{2.89e + 08}&{ - 8.38e + 09}&{1.07e + 11}&{ - 7.48e + 11}&{3.15e + 12}&{ - 8.48e + 12}\\{1.61e + 07}&{ - 1.91e + 09}&{5.72e + 10}&{ - 7.48e + 11}&{5.30e + 12}&{ - 2.27e + 13}&{6.16e + 13}\\{ - 6.35e + 07}&{7.76e + 09}&{ - 2.37e + 11}&{3.15e + 12}&{ - 2.27e + 13}&{6.16e + 13}&{ - 2.69e + 14}\\{1.62e + 08}&{ - 2.03e + 10}&{6.29e + 11}&{ - 8.48e + 12}&{6.16e + 13}&{ - 2.69e + 14}&{7.44e + 14}\\{ - 2.73e + 08}&{3.47e + 10}&{ - 1.09e + 12}&{1.49e + 13}&{ - 1.09e + 14}&{4.80e + 14}&{ - 1.34e + 15}\\{3.02e + 08}&{ - 3.89e + 10}&{1.24e + 12}&{ - 1.70e + 13}&{1.26e + 14}&{ - 5.57e + 14}&{1.56e + 15}\\{ - 2.10e + 08}&{2.74e + 10}&{ - 8.81e + 11}&{1.22e + 13}&{ - 9.08e + 13}&{4.04e + 14}&{ - 1.14e + 15}\\{8.83e + 07}&{ - 1.10e + 10}&{3.57e + 11}&{ - 4.98e + 12}&{3.72e + 13}&{ - 1.66e + 14}&{4.70e + 14}\\{ - 1.45e + 07}&{1.93e + 09}&{ - 6.29e + 10}&{8.82e + 11}&{ - 6.63e + 12}&{2.98e + 13}&{ - 8.44e + 13}\end{aligned}} \right.\)

\(\left. {\begin{aligned}{*{20}{c}}{ - 2.73e + 08}&{3.02e + 08}&{ - 2.10e + 08}&{8.38e + 07}&{ - 1.45e + 07}\\{3.47e + 10}&{ - 3.89e + 10}&{ - 2.74e + 10}&{ - 1.10e + 10}&{1.93e + 09}\\{ - 1.09e + 12}&{1.24e + 12}&{ - 8.81e + 11}&{3.57e + 11}&{ - 6.29e + 10}\\{1.49e + 13}&{ - 1.70e + 13}&{1.22e + 13}&{ - 4.89e + 12}&{8.82e + 11}\\{ - 1.09e + 14}&{1.26e + 14}&{ - 9.08e + 13}&{3.72e + 13}&{ - 6.63e + 12}\\{4.80e + 14}&{ - 5.57e + 14}&{4.04e + 14}&{ - 1.66e + 14}&{2.98e + 13}\\{ - 1.34e + 15}&{1.56e + 15}&{ - 1.14e + 15}&{4.70e + 14}&{ - 8.44e + 13}\\{2.42e + 15}&{ - 2.84e + 15}&{2.80e + 15}&{ - 8.62e + 14}&{1.55e + 14}\\{ - 2.84e + 15}&{3.34e + 15}&{ - 2.45e + 15}&{1.02e + 15}&{ - 1.85e + 14}\\{2.08e + 15}&{ - 2.45e + 15}&{1.81e + 15}&{ - 7.56e + 14}&{1.37e + 14}\\{ - 8.62e + 14}&{1.02e + 15}&{ - 7.56e + 14}&{3.17e + 14}&{ - 5.75e + 13}\\{1.55e + 14}&{ - 1.85e + 14}&{1.37e + 14}&{ - 5.75e + 13}&{1.05e + 13}\end{aligned}} \right)\)

03

Obtain the product of the matrix and its inverse

Compute matrix C by using the MATLAB command shown below:

\( > > C = {\rm{A}}*{\rm{B}}\)

\(\left( {\begin{aligned}{*{20}{c}}{1.000}&{0.000}&{0.000}&{ - 0.001}&{0.001}&{0.006}&{ - 0.010}&{ - 0.019}&{ - 0.054}&{0.000}&{0.007}&{ - 0.001}\\{ - 0.005}&{1.000}&{0.000}&{0.000}&{0.002}&{0.000}&{0.020}&{ - 0.052}&{0.025}&{ - 0.019}&{0.003}&{ - 0.004}\\{ - 0.006}&{0.003}&{1.000}&{0.000}&{0.002}&{ - 0.002}&{0.023}&{ - 0.042}&{0.041}&{ - 0.036}&{0.007}&{ - 0.003}\\{ - 0.007}&{0.004}&{ - 0.001}&{1.000}&{0.002}&{ - 0.003}&{0.015}&{ - 0.035}&{0.049}&{ - 0.047}&{0.003}&{ - 0.003}\\{ - 0.007}&{0.006}&{ - 0.001}&{0.000}&{1.003}&{0.000}&{0.001}&{ - 0.029}&{0.027}&{ - 0.021}&{0.006}&{ - 0.002}\\{ - 0.007}&{0.006}&{ - 0.001}&{ - 0.001}&{0.002}&{0.997}&{0.020}&{ - 0.036}&{0.047}&{ - 0.036}&{0.010}&{ - 0.003}\\{ - 0.007}&{0.006}&{ - 0.001}&{ - 0.002}&{0.002}&{ - 0.004}&{1.012}&{ - 0.040}&{0.047}&{ - 0.034}&{0.010}&{ - 0.002}\\{ - 0.006}&{0.007}&{0.000}&{ - 0.003}&{0.002}&{ - 0.006}&{0.016}&{0.948}&{0.050}&{ - 0.040}&{0.015}&{ - 0.003}\\{ - 0.006}&{0.007}&{0.000}&{ - 0.003}&{0.001}&{0.005}&{ - 0.011}&{0.012}&{1.012}&{ - 0.001}&{ - 0.001}&{ - 0.001}\\{ - 0.006}&{0.006}&{0.000}&{ - 0.004}&{0.003}&{ - 0.002}&{0.005}&{ - 0.031}&{0.049}&{0.975}&{0.13}&{ - 0.002}\\{ - 0.006}&{0.006}&{0.001}&{ - 0.004}&{0.000}&{0.009}&{ - 0.022}&{0.009}&{ - 0.033}&{0.025}&{0.989}&{0.002}\\{ - 0.006}&{0.006}&{0.001}&{ - 0.005}&{0.002}&{0.001}&{0.006}&{ - 0.018}&{0.025}&{ - 0.018}&{0.002}&{0.999}\end{aligned}} \right)\)

Thus, the resultant matrix is an identity matrix.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Exercises 11 and 12, determine if \({\rm{b}}\) is a linear combination of \({{\mathop{\rm a}\nolimits} _1},{a_2}\) and \({a_3}\).

11.\({a_1} = \left[ {\begin{array}{*{20}{c}}1\\{ - 2}\\0\end{array}} \right],{a_2} = \left[ {\begin{array}{*{20}{c}}0\\1\\2\end{array}} \right],{a_3} = \left[ {\begin{array}{*{20}{c}}5\\{ - 6}\\8\end{array}} \right],{\mathop{\rm b}\nolimits} = \left[ {\begin{array}{*{20}{c}}2\\{ - 1}\\6\end{array}} \right]\)

Construct a \(2 \times 3\) matrix \(A\), not in echelon form, such that the solution of \(Ax = 0\) is a plane in \({\mathbb{R}^3}\).

Use the accompanying figure to write each vector listed in Exercises 7 and 8 as a linear combination of u and v. Is every vector in \({\mathbb{R}^2}\) a linear combination of u and v?

7.Vectors a, b, c, and d

Let \(u = \left[ {\begin{array}{*{20}{c}}2\\{ - 1}\end{array}} \right]\) and \(v = \left[ {\begin{array}{*{20}{c}}2\\1\end{array}} \right]\). Show that \(\left[ {\begin{array}{*{20}{c}}h\\k\end{array}} \right]\) is in Span \(\left\{ {u,v} \right\}\) for all \(h\) and\(k\).

Consider the problem of determining whether the following system of equations is consistent:

\(\begin{aligned}{c}{\bf{4}}{x_1} - {\bf{2}}{x_2} + {\bf{7}}{x_3} = - {\bf{5}}\\{\bf{8}}{x_1} - {\bf{3}}{x_2} + {\bf{10}}{x_3} = - {\bf{3}}\end{aligned}\)

  1. Define appropriate vectors, and restate the problem in terms of linear combinations. Then solve that problem.
  1. Define an appropriate matrix, and restate the problem using the phrase โ€œcolumns of A.โ€
  1. Define an appropriate linear transformation T using the matrix in (b), and restate the problem in terms of T.
See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free