Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Exercises 42–44 show how to use the condition number of a matrix Ato estimate the accuracy of a computed solution of\(Ax = b\). If the entries of Aand b are accurate to about rsignificant digits and if the condition number of Ais approximately\({\bf{1}}{{\bf{0}}^k}\)(with ka positive integer), then the computed solution of\(Ax = b\)should usually be accurate to at least\(r - k\)significant digits.

44. Solve an equation\(Ax = b\)for a suitable b to find the last column of the inverse of the fifth-order Hilbert matrix

\(A = \left( {\begin{aligned}{*{20}{c}}1&{1/2}&{1/3}&{1/4}&{1/5}\\{1/2}&{1/3}&{1/4}&{1/5}&{1/6}\\{1/3}&{1/4}&{1/5}&{1/6}&{1/7}\\{1/4}&{1/5}&{1/6}&{1/7}&{1/8}\\{1/5}&{1/6}&{1/7}&{1/8}&{1/9}\end{aligned}} \right)\)

How many digits in each entry of x do you expect to be correct? Explain. (Note:The exact solution is\(\left( {630, - 12600,56700, - 88200,44100} \right)\).)

Short Answer

Expert verified

The solution has approximately 11 decimal places, and the calculated answer

(\({\bf{x}}\)) is accurate.

Step by step solution

01

Obtain the column matrix b

Consider the matrix\(A = \left( {\begin{aligned}{*{20}{c}}1&{1/2}&{1/3}&{1/4}&{1/5}\\{1/2}&{1/3}&{1/4}&{1/5}&{1/6}\\{1/3}&{1/4}&{1/5}&{1/6}&{1/7}\\{1/4}&{1/5}&{1/6}&{1/7}&{1/8}\\{1/5}&{1/6}&{1/7}&{1/8}&{1/9}\end{aligned}} \right)\).

Obtain a random matrix by using the MATLAB command shown below:

\( > > {\bf{b}} = {\rm{rand}}\left( {5,1} \right)\)

\({\bf{b}} = \left( {\begin{aligned}{*{20}{c}}0\\0\\0\\0\\1\end{aligned}} \right)\)

02

Obtain the MATLAB solution

Compute\({\bf{x}}\)of\(A{\bf{x}} = {\bf{b}}\)by using the MATLAB command shown below:

\(\begin{aligned}{l} > > {\rm{ A }} = {\rm{ }}\left( \begin{aligned}{l}1{\rm{ 1/2 1/3 1/4 1/5; 1/2 1/3 1/4 1/5 1/6; 1/3 1/4 1/5 1/6 1/7; }}\\{\rm{1/4 1/5 1/6 1/7 1/8; 1/5 1/6 1/7 1/8 1/9}}\end{aligned} \right){\rm{;}}\\ > > b = \left( {0{\rm{; 0; 0; 0; 1}}} \right){\rm{;}}\\ > > x = A\backslash b\end{aligned}\)

The output is \({\bf{x}} = \left( {\begin{aligned}{*{20}{c}}{630.00}\\{ - 12600.00}\\{56700.00}\\{ - 88200.00}\\{44100.00}\end{aligned}} \right)\).

03

Obtain the condition number of matrix A

Consider matrix A as shown below:

\(A = \left( {\begin{aligned}{*{20}{c}}1&{1/2}&{1/3}&{1/4}&{1/5}\\{1/2}&{1/3}&{1/4}&{1/5}&{1/6}\\{1/3}&{1/4}&{1/5}&{1/6}&{1/7}\\{1/4}&{1/5}&{1/6}&{1/7}&{1/8}\\{1/5}&{1/6}&{1/7}&{1/8}&{1/9}\end{aligned}} \right)\)

Obtain thecondition numberof matrix A by using the MATLAB command shown below:

\(\begin{aligned}{l} > > {\rm{ A }} = {\rm{ }}\left( \begin{aligned}{l}1{\rm{ 1/2 1/3 1/4 1/5; 1/2 1/3 1/4 1/5 1/6; 1/3 1/4 1/5 1/6 1/7; }}\\{\rm{1/4 1/5 1/6 1/7 1/8; 1/5 1/6 1/7 1/8 1/9}}\end{aligned} \right){\rm{;}}\\ > > {\rm{ C}} = {\rm{cond}}\left( {\rm{A}} \right)\end{aligned}\)

It gives the output 476607.25.

Thus, thecondition number of matrix A is 476608 or\(4.8 \times {10^5}\).

The solution has approximately 11 decimal places, and the calculated answer

(\({\bf{x}}\)) is accurate.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Exercises 6, write a system of equations that is equivalent to the given vector equation.

6. \({x_1}\left[ {\begin{array}{*{20}{c}}{ - 2}\\3\end{array}} \right] + {x_2}\left[ {\begin{array}{*{20}{c}}8\\5\end{array}} \right] + {x_3}\left[ {\begin{array}{*{20}{c}}1\\{ - 6}\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}0\\0\end{array}} \right]\)

Let \({{\mathop{\rm a}\nolimits} _1} = \left[ {\begin{array}{*{20}{c}}1\\4\\{ - 2}\end{array}} \right],{{\mathop{\rm a}\nolimits} _2} = \left[ {\begin{array}{*{20}{c}}{ - 2}\\{ - 3}\\7\end{array}} \right],\) and \({\rm{b = }}\left[ {\begin{array}{*{20}{c}}4\\1\\h\end{array}} \right]\). For what values(s) of \(h\) is \({\mathop{\rm b}\nolimits} \) in the plane spanned by \({{\mathop{\rm a}\nolimits} _1}\) and \({{\mathop{\rm a}\nolimits} _2}\)?

In Exercises 15 and 16, list five vectors in Span \(\left\{ {{v_1},{v_2}} \right\}\). For each vector, show the weights on \({{\mathop{\rm v}\nolimits} _1}\) and \({{\mathop{\rm v}\nolimits} _2}\) used to generate the vector and list the three entries of the vector. Do not make a sketch.

15. \({{\mathop{\rm v}\nolimits} _1} = \left[ {\begin{array}{*{20}{c}}7\\1\\{ - 6}\end{array}} \right],{v_2} = \left[ {\begin{array}{*{20}{c}}{ - 5}\\3\\0\end{array}} \right]\)

Give a geometric description of span \(\left\{ {{v_1},{v_2}} \right\}\) for the vectors \({{\mathop{\rm v}\nolimits} _1} = \left[ {\begin{array}{*{20}{c}}8\\2\\{ - 6}\end{array}} \right]\) and \({{\mathop{\rm v}\nolimits} _2} = \left[ {\begin{array}{*{20}{c}}{12}\\3\\{ - 9}\end{array}} \right]\).

If Ais an \(n \times n\) matrix and the transformation \({\bf{x}}| \to A{\bf{x}}\) is one-to-one, what else can you say about this transformation? Justify your answer.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free