Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

With A and B as in Exercise 41, select a column v of A that was not used in the construction of B and determine if v is in the set spanned by the columns of B. (Describe your calculations.)

Short Answer

Expert verified

Every linearly dependent column in A is in the set spanned by the columns of B because there are three pivot elements.

Step by step solution

01

Identify pivot position

To identify the pivot and the pivot position, observe the matrix’s leftmost column (nonzero column), that is, the pivot column. At the top of this column, 8 is the pivot.

02

Apply row operation

Consider matrix \(A = \left[ {\begin{array}{*{20}{c}}8&{ - 3}&0&{ - 7}&2\\{ - 9}&4&5&{11}&{ - 7}\\6&{ - 2}&2&{ - 4}&4\\5&{ - 1}&7&0&{10}\end{array}} \right]\).

Use code in the MATLAB to obtain the row-reduced echelon form as shown below:

\(\begin{array}{l} > > {\rm{ A }} = {\rm{ }}\left[ {{\rm{8 }} - 3{\rm{ }}0{\rm{ }} - 7{\rm{ 2}};{\rm{ }} - 9{\rm{ 4 5 }}11{\rm{ }} - {\rm{7}};{\rm{ 6 }} - {\rm{2 2 }} - {\rm{4 4}};{\rm{ 5 }} - 1{\rm{ 7 0 }}10} \right];\\ > > {\rm{ U}} = {\rm{rref}}\left( {\rm{A}} \right)\end{array}\)

\(\left[ {\begin{array}{*{20}{c}}8&{ - 3}&0&{ - 7}&2\\{ - 9}&4&5&{11}&{ - 7}\\6&{ - 2}&2&{ - 4}&4\\5&{ - 1}&7&0&{10}\end{array}} \right] \sim \left[ {\begin{array}{*{20}{c}}1&0&2&0&2\\0&1&{ - 1}&0&{ - 1}\\0&0&0&1&{ - 2}\\0&0&0&0&0\end{array}} \right]\)

03

Mark the pivot positions in the matrix

Mark the nonzero leading entries in columns 1, 2, and 4.

Columns 3 and 5 are the linear combinations of 1, 2, and 4 columns.

Now, mark the pivot columns of the given matrix as shown below:

04

Construct matrix B

Construct matrix B by using the 1, 2, and 4 pivot columns of the matrixas shown below:

\(B = \left[ {\begin{array}{*{20}{c}}8&{ - 3}&7\\{ - 9}&4&{11}\\6&{ - 2}&{ - 4}\\5&{ - 1}&0\end{array}} \right]\)

05

Choose one dependent vector and obtain the augmented matrix

Let one of the dependent vectors be\({\bf{v}} = \left[ {\begin{array}{*{20}{c}}{ - 4}\\{15}\\1\\{15}\end{array}} \right]\).

Obtain the augmented matrix\(\left[ {\begin{array}{*{20}{c}}B&{\bf{v}}\end{array}} \right]\)as shown below:

\(\left[ {\begin{array}{*{20}{c}}8&{ - 3}&7&{ - 4}\\{ - 9}&4&{11}&{15}\\6&{ - 2}&{ - 4}&1\\5&{ - 1}&0&{15}\end{array}} \right]\)

Use code in the MATLAB to obtain the row-reduced echelon form as shown below:

\(\begin{array}{l} > > {\rm{ A }} = {\rm{ }}\left[ {{\rm{8 }} - 3{\rm{ }} - 7{\rm{ - 4}};{\rm{ }} - 9{\rm{ 4 }}11{\rm{ 15}};{\rm{ 6 }} - {\rm{2 }} - {\rm{4 1}};{\rm{ 5 }} - 1{\rm{ 0 }}15} \right];\\ > > {\rm{ U}} = {\rm{rref}}\left( {\rm{A}} \right)\end{array}\)

\(\left[ {\begin{array}{*{20}{c}}8&{ - 3}&7&{ - 4}\\{ - 9}&4&{11}&{15}\\6&{ - 2}&{ - 4}&1\\5&{ - 1}&0&{15}\end{array}} \right] \sim \left[ {\begin{array}{*{20}{c}}1&0&0&2\\0&1&0&{ - 1}\\0&0&1&{ - 2}\\0&0&0&0\end{array}} \right]\)

Thus, every linearly dependent column in A is in the set spanned by the columns of B because there are three pivot elements.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Determine which of the matrices in Exercises 7–12areorthogonal. If orthogonal, find the inverse.

11. \(\left( {\begin{aligned}{{}}{2/3}&{2/3}&{1/3}\\0&{1/3}&{ - 2/3}\\{5/3}&{ - 4/3}&{ - 2/3}\end{aligned}} \right)\)

In Exercise 23 and 24, make each statement True or False. Justify each answer.

24.

a. Any list of five real numbers is a vector in \({\mathbb{R}^5}\).

b. The vector \({\mathop{\rm u}\nolimits} \) results when a vector \({\mathop{\rm u}\nolimits} - v\) is added to the vector \({\mathop{\rm v}\nolimits} \).

c. The weights \({{\mathop{\rm c}\nolimits} _1},...,{c_p}\) in a linear combination \({c_1}{v_1} + \cdot \cdot \cdot + {c_p}{v_p}\) cannot all be zero.

d. When are \({\mathop{\rm u}\nolimits} \) nonzero vectors, Span \(\left\{ {u,v} \right\}\) contains the line through \({\mathop{\rm u}\nolimits} \) and the origin.

e. Asking whether the linear system corresponding to an augmented matrix \(\left[ {\begin{array}{*{20}{c}}{{{\rm{a}}_{\rm{1}}}}&{{{\rm{a}}_{\rm{2}}}}&{{{\rm{a}}_{\rm{3}}}}&{\rm{b}}\end{array}} \right]\) has a solution amounts to asking whether \({\mathop{\rm b}\nolimits} \) is in Span\(\left\{ {{a_1},{a_2},{a_3}} \right\}\).

In Exercises 15 and 16, list five vectors in Span \(\left\{ {{v_1},{v_2}} \right\}\). For each vector, show the weights on \({{\mathop{\rm v}\nolimits} _1}\) and \({{\mathop{\rm v}\nolimits} _2}\) used to generate the vector and list the three entries of the vector. Do not make a sketch.

16. \({{\mathop{\rm v}\nolimits} _1} = \left[ {\begin{array}{*{20}{c}}3\\0\\2\end{array}} \right],{v_2} = \left[ {\begin{array}{*{20}{c}}{ - 2}\\0\\3\end{array}} \right]\)

Question: If A is a non-zero matrix of the form,[a-bba] then the rank of A must be 2.

Let \(T:{\mathbb{R}^n} \to {\mathbb{R}^n}\) be an invertible linear transformation, and let Sand U be functions from \({\mathbb{R}^n}\) into \({\mathbb{R}^n}\) such that \(S\left( {T\left( {\mathop{\rm x}\nolimits} \right)} \right) = {\mathop{\rm x}\nolimits} \) and \(\)\(U\left( {T\left( {\mathop{\rm x}\nolimits} \right)} \right) = {\mathop{\rm x}\nolimits} \) for all x in \({\mathbb{R}^n}\). Show that \(U\left( v \right) = S\left( v \right)\) for all v in \({\mathbb{R}^n}\). This will show that Thas a unique inverse, as asserted in theorem 9. (Hint: Given any v in \({\mathbb{R}^n}\), we can write \({\mathop{\rm v}\nolimits} = T\left( {\mathop{\rm x}\nolimits} \right)\) for some x. Why? Compute \(S\left( {\mathop{\rm v}\nolimits} \right)\) and \(U\left( {\mathop{\rm v}\nolimits} \right)\)).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free