Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In Exercises 41 and 42, use as many columns of A as possible to construct a matrix B with the property that the equation \(B{\bf{x}} = 0\) has only the trivial solution. Solve \(B{\bf{x}} = 0\) to verify your work.

41. \(A = \left[ {\begin{array}{*{20}{c}}8&{ - 3}&0&{ - 7}&2\\{ - 9}&4&5&{11}&{ - 7}\\6&{ - 2}&2&{ - 4}&4\\5&{ - 1}&7&0&{10}\end{array}} \right]\)

Short Answer

Expert verified

The matrix is \(B = \left[ {\begin{array}{*{20}{c}}8&{ - 3}&2\\{ - 9}&4&{ - 7}\\6&{ - 2}&4\\5&{ - 1}&{10}\end{array}} \right]\),\(B = \left[ {\begin{array}{*{20}{c}}8&0&2\\{ - 9}&5&{ - 7}\\6&2&4\\5&7&{10}\end{array}} \right]\), or\(B = \left[ {\begin{array}{*{20}{c}}8&{ - 7}&2\\{ - 9}&{11}&{ - 7}\\6&{ - 4}&4\\5&0&{10}\end{array}} \right]\).

The equation \(B{\bf{x}} = 0\) has a trivial solution.

Step by step solution

01

Identify pivot position

To identify the pivot and the pivot position, observe the matrix’s leftmost column (nonzero column), that is, the pivot column. At the top of this column, 8 is the pivot.

02

Apply row operation

Consider matrix \(A = \left[ {\begin{array}{*{20}{c}}8&{ - 3}&0&{ - 7}&2\\{ - 9}&4&5&{11}&{ - 7}\\6&{ - 2}&2&{ - 4}&4\\5&{ - 1}&7&0&{10}\end{array}} \right]\).

Use code in the MATLAB to obtain the row-reduced echelon form as shown below:

\(\begin{array}{l} > > {\rm{ A }} = {\rm{ }}\left[ {{\rm{8 }} - 3{\rm{ }}0{\rm{ }} - 7{\rm{ 2}};{\rm{ }} - 9{\rm{ 4 5 }}11{\rm{ }} - {\rm{7}};{\rm{ 6 }} - {\rm{2 2 }} - {\rm{4 4}};{\rm{ 5 }} - 1{\rm{ 7 0 }}10} \right];\\ > > {\rm{ U}} = {\rm{rref}}\left( {\rm{A}} \right)\end{array}\)

\(\left[ {\begin{array}{*{20}{c}}8&{ - 3}&0&{ - 7}&2\\{ - 9}&4&5&{11}&{ - 7}\\6&{ - 2}&2&{ - 4}&4\\5&{ - 1}&7&0&{10}\end{array}} \right] \sim \left[ {\begin{array}{*{20}{c}}1&0&3&1&0\\0&1&8&5&0\\0&0&0&0&1\\0&0&0&0&0\end{array}} \right]\)

03

Mark the pivot positions in the matrix

Mark the nonzero leading entries in columns 1, 2, and 5.

Now, mark the pivot columns of the given matrix as shown below:

04

Construct matrix B

Construct matrix B by using the 1, 2, and 5 pivot columns of the matrixas shown below:

\(B = \left[ {\begin{array}{*{20}{c}}8&{ - 3}&2\\{ - 9}&4&{ - 7}\\6&{ - 2}&4\\5&{ - 1}&{10}\end{array}} \right]\)

Matrix B can also be written using column 3 or column 4 of matrix A in the place of column 2 of matrix B as shown below:

\(B = \left[ {\begin{array}{*{20}{c}}8&0&2\\{ - 9}&5&{ - 7}\\6&2&4\\5&7&{10}\end{array}} \right]\)

Or,

\(B = \left[ {\begin{array}{*{20}{c}}8&{ - 7}&2\\{ - 9}&{11}&{ - 7}\\6&{ - 4}&4\\5&0&{10}\end{array}} \right]\)

05

Show that \(B{\bf{x}} = 0\) has a trivial solution

Use matrix\(B = \left[ {\begin{array}{*{20}{c}}8&{ - 3}&2\\{ - 9}&4&{ - 7}\\6&{ - 2}&4\\5&{ - 1}&{10}\end{array}} \right]\)in the equation\(B{\bf{x}} = 0\)to show that the system has a trivial solution.

\(\left[ {\begin{array}{*{20}{c}}8&{ - 3}&2\\{ - 9}&4&{ - 7}\\6&{ - 2}&4\\5&{ - 1}&{10}\end{array}} \right]\left[ {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\\{{x_3}}\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}0\\0\\0\end{array}} \right]\)

The above matrix equation in the augmented matrix \[\left[ {\begin{array}{*{20}{c}}B&0\end{array}} \right]\] can be written as shown below:

\(\left[ {\begin{array}{*{20}{c}}8&{ - 3}&2&0\\{ - 9}&4&{ - 7}&0\\6&{ - 2}&4&0\\5&{ - 1}&{10}&0\end{array}} \right]\)

Use code in the MATLAB to obtain the row-reduced echelon form as shown below:

\(\begin{array}{l} > > {\rm{ A }} = {\rm{ }}\left[ {8{\rm{ }} - 3{\rm{ }}2{\rm{ }}0;{\rm{ }} - 9{\rm{ }}4{\rm{ }} - 7{\rm{ }}0{\rm{ }};{\rm{ }}6{\rm{ }} - 2{\rm{ }}4{\rm{ }}0;{\rm{ }}5{\rm{ }} - 1{\rm{ }}10{\rm{ }}0} \right];\\ > > {\rm{ U}} = {\rm{rref}}\left( {\rm{A}} \right)\end{array}\)

\(\left[ {\begin{array}{*{20}{c}}8&{ - 3}&2&0\\{ - 9}&4&{ - 7}&0\\6&{ - 2}&4&0\\5&{ - 1}&{10}&0\end{array}} \right] \sim \left[ {\begin{array}{*{20}{c}}1&0&0&0\\0&1&0&0\\0&0&1&0\\0&0&0&0\end{array}} \right]\)

In the equation, the matrix row can be written as shown below:

\(\begin{array}{l}{x_1} = 0\\{x_2} = 0\\{x_3} = 0\end{array}\)

Thus, \(B{\bf{x}} = 0\) has a trivial solution.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Find the elementary row operation that transforms the first matrix into the second, and then find the reverse row operation that transforms the second matrix into the first.

30.\(\left[ {\begin{array}{*{20}{c}}1&3&{ - 4}\\0&{ - 2}&6\\0&{ - 5}&9\end{array}} \right]\), \(\left[ {\begin{array}{*{20}{c}}1&3&{ - 4}\\0&1&{ - 3}\\0&{ - 5}&9\end{array}} \right]\)

Consider a dynamical system x(t+1)=Ax(t)with two components. The accompanying sketch shows the initial state vector x0and two eigenvectors υ1andυ2of A (with eigen values λ1andλ2 respectively). For the given values of λ1andλ2, draw a rough trajectory. Consider the future and the past of the system.

λ1=1.2,λ2=1.1

Suppose an experiment leads to the following system of equations:

\(\begin{aligned}{c}{\bf{4}}.{\bf{5}}{x_{\bf{1}}} + {\bf{3}}.{\bf{1}}{x_{\bf{2}}} = {\bf{19}}.{\bf{249}}\\1.6{x_{\bf{1}}} + 1.1{x_{\bf{2}}} = 6.843\end{aligned}\) (3)

  1. Solve system (3), and then solve system (4), below, in which the data on the right have been rounded to two decimal places. In each case, find the exactsolution.

\(\begin{aligned}{c}{\bf{4}}.{\bf{5}}{x_{\bf{1}}} + {\bf{3}}.{\bf{1}}{x_{\bf{2}}} = {\bf{19}}.{\bf{25}}\\1.6{x_{\bf{1}}} + 1.1{x_{\bf{2}}} = 6.8{\bf{4}}\end{aligned}\) (4)

  1. The entries in (4) differ from those in (3) by less than .05%. Find the percentage error when using the solution of (4) as an approximation for the solution of (3).
  1. Use your matrix program to produce the condition number of the coefficient matrix in (3).

Write the vector \(\left( {\begin{array}{*{20}{c}}5\\6\end{array}} \right)\) as the sum of two vectors, one on the line \(\left\{ {\left( {x,y} \right):y = {\bf{2}}x} \right\}\) and one on the line \(\left\{ {\left( {x,y} \right):y = x/{\bf{2}}} \right\}\).

In Exercises 33 and 34, Tis a linear transformation from \({\mathbb{R}^2}\) into \({\mathbb{R}^2}\). Show that T is invertible and find a formula for \({T^{ - 1}}\).

33. \(T\left( {{x_1},{x_2}} \right) = \left( { - 5{x_1} + 9{x_2},4{x_1} - 7{x_2}} \right)\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free