Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Suppose an \(m \times n\) matrix Ahas \(n\) pivot columns. Explain why for each b in \({\mathbb{R}^m}\) the equation \(A{\bf{x}} = {\bf{b}}\) has at most one solution. [Hint:Explain why \(A{\bf{x}} = {\bf{b}}\) cannot have infinitely many solutions.]

Short Answer

Expert verified

The equation \(A{\bf{x}} = {\bf{b}}\) has at most one solution.

Step by step solution

01

The condition for infinitely many solutions

For the matrix equation \(A{\bf{x}} = {\bf{b}}\), the system of equations has infinitely many solutions if the variables are free.

02

Explanation for why the matrix equation cannot have infinitely many solutions

For a matrix of order\(m \times n\), there are\(n\)columns in matrix A. Also, matrix A has\(n\)pivot columns, which means each column has a pivot position.

It shows that the matrix equation\(A{\bf{x}} = {\bf{b}}\)does not have free variables. Thus, the system of equations cannot have infinitely many solutions.

Hence, the equation has at most one solution.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Suppose an experiment leads to the following system of equations:

\(\begin{aligned}{c}{\bf{4}}.{\bf{5}}{x_{\bf{1}}} + {\bf{3}}.{\bf{1}}{x_{\bf{2}}} = {\bf{19}}.{\bf{249}}\\1.6{x_{\bf{1}}} + 1.1{x_{\bf{2}}} = 6.843\end{aligned}\) (3)

  1. Solve system (3), and then solve system (4), below, in which the data on the right have been rounded to two decimal places. In each case, find the exactsolution.

\(\begin{aligned}{c}{\bf{4}}.{\bf{5}}{x_{\bf{1}}} + {\bf{3}}.{\bf{1}}{x_{\bf{2}}} = {\bf{19}}.{\bf{25}}\\1.6{x_{\bf{1}}} + 1.1{x_{\bf{2}}} = 6.8{\bf{4}}\end{aligned}\) (4)

  1. The entries in (4) differ from those in (3) by less than .05%. Find the percentage error when using the solution of (4) as an approximation for the solution of (3).
  1. Use your matrix program to produce the condition number of the coefficient matrix in (3).

In Exercises 6, write a system of equations that is equivalent to the given vector equation.

6. \({x_1}\left[ {\begin{array}{*{20}{c}}{ - 2}\\3\end{array}} \right] + {x_2}\left[ {\begin{array}{*{20}{c}}8\\5\end{array}} \right] + {x_3}\left[ {\begin{array}{*{20}{c}}1\\{ - 6}\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}0\\0\end{array}} \right]\)

Give a geometric description of span \(\left\{ {{v_1},{v_2}} \right\}\) for the vectors \({{\mathop{\rm v}\nolimits} _1} = \left[ {\begin{array}{*{20}{c}}8\\2\\{ - 6}\end{array}} \right]\) and \({{\mathop{\rm v}\nolimits} _2} = \left[ {\begin{array}{*{20}{c}}{12}\\3\\{ - 9}\end{array}} \right]\).

Determine the values(s) of \(h\) such that matrix is the augmented matrix of a consistent linear system.

17. \(\left[ {\begin{array}{*{20}{c}}2&3&h\\4&6&7\end{array}} \right]\)

Determine the value(s) of \(a\) such that \(\left\{ {\left( {\begin{aligned}{*{20}{c}}1\\a\end{aligned}} \right),\left( {\begin{aligned}{*{20}{c}}a\\{a + 2}\end{aligned}} \right)} \right\}\) is linearly independent.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free