Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Let \({\bf{b}} = \left[ {\begin{array}{*{20}{c}}{ - 7}\\{ - 7}\\{13}\\{ - 5}\end{array}} \right]\) and let A be the matrix in Exercise 38. Is b in the range of the transformation \({\bf{x}}| \to A{\bf{x}}\)? If so, find an x whose image under the transformation is b.

Short Answer

Expert verified

Yes, bis in the range of the transformation. One of the choices for x is \(\left( { - 2, - 4,5,1} \right)\), whose image under the transformation is b.

Step by step solution

01

Convert the augmented matrix into the row reduction echelon form

Consider matrix \(A = \left[ {\begin{array}{*{20}{c}}{ - 9}&{ - 4}&{ - 9}&4\\5&{ - 8}&{ - 7}&6\\7&{11}&{16}&{ - 9}\\9&{ - 7}&{ - 4}&5\end{array}} \right]\).

Obtain the augmented matrix\(\left[ {\begin{array}{*{20}{c}}A&b\end{array}} \right]\).

\(\left[ {\begin{array}{*{20}{c}}{ - 9}&{ - 4}&{ - 9}&4&{ - 7}\\5&{ - 8}&{ - 7}&6&{ - 7}\\7&{11}&{16}&{ - 9}&{13}\\9&{ - 7}&{ - 4}&5&{ - 5}\end{array}} \right]\)

Use code in the MATLAB to obtain the row-reduced echelon form as shown below:

\(\begin{array}{l} > > {\rm{ A }} = {\rm{ }}\left[ { - 9{\rm{ }} - 4{\rm{ }} - 9{\rm{ }}4{\rm{ }} - 7;{\rm{ }}5{\rm{ }} - 8{\rm{ }} - 7{\rm{ }}6{\rm{ }} - 7;{\rm{ }}7{\rm{ }}11{\rm{ }}16{\rm{ }} - 9{\rm{ 13}};{\rm{ }}9{\rm{ }} - 7{\rm{ }} - 4{\rm{ }}5{\rm{ }} - {\rm{5}}} \right];\\ > > {\rm{ U}} = {\rm{rref}}\left( {\rm{A}} \right)\end{array}\)

\(\left[ {\begin{array}{*{20}{c}}{ - 9}&{ - 4}&{ - 9}&4&{ - 7}\\5&{ - 8}&{ - 7}&6&{ - 7}\\7&{11}&{16}&{ - 9}&{13}\\9&{ - 7}&{ - 4}&5&{ - 5}\end{array}} \right] \sim \left[ {\begin{array}{*{20}{c}}1&0&0&{3/4}&{ - 5/4}\\0&1&0&{5/4}&{ - 11/4}\\0&0&1&{ - 7/4}&{13/4}\\0&0&0&0&0\end{array}} \right]\)

02

Write the augmented matrix into the system of equations

The system of equations is shown below:

\(\begin{array}{c}{x_1} + \frac{3}{4}{x_4} = - \frac{5}{4}\\{x_2} + \frac{5}{4}{x_4} = - \frac{{11}}{4}\\{x_3} - \frac{7}{4}{x_4} = \frac{{13}}{4}\end{array}\)

From the above system of equations, it is observed that the augmented matrix is a consistent system.

Thus, bis in the range of the transformation.

03

Separate the variables into free and basic variables

From the above equations, \({x_1}\), \({x_2}\), and \({x_3}\) correspond to the pivot positions. So, \({x_1}\), \({x_2}\), and \({x_3}\) are the basic variables, and \({x_4}\) is a free variable.

Let \({x_4} = t\).

04

Obtain the value of basic variables in parametric forms

Substitute the value \({x_4} = t\) in the equation \({x_1} + \frac{3}{4}{x_4} = - \frac{5}{4}\) to obtain the general solution.

\(\begin{aligned}{c}{x_1} + \frac{3}{4}\left( t \right) &= - \frac{5}{4}\\{x_1} &= - \frac{5}{4} - \frac{{3t}}{4}\end{aligned}\)

Substitute the value \({x_4} = t\) in the equation \({x_2} + \frac{5}{4}{x_4} = - \frac{{11}}{4}\) to obtain the general solution.

\(\begin{aligned}{c}{x_2} + \frac{5}{4}\left( t \right) &= - \frac{{11}}{4}\\{x_2} &= - \frac{{11}}{4} - \frac{{5t}}{4}\end{aligned}\)

Substitute the value \({x_4} = t\) in the equation \({x_3} - \frac{7}{4}{x_4} = \frac{{13}}{4}\) to obtain the general solution.

\(\begin{aligned}{c}{x_3} - \frac{7}{4}\left( t \right) &= \frac{{13}}{4}\\{x_3} &= \frac{{13}}{4} + \frac{{7t}}{4}\end{aligned}\)

05

Write the solution in a parametric form

Obtain the vector in a parametric form by using \({x_1} = - \frac{5}{4} - \frac{{3t}}{4}\), \({x_2} = - \frac{{11}}{4} - \frac{{5t}}{4}\), \({x_3} = \frac{{13}}{4} + \frac{{7t}}{4}\), and \({x_4} = t\).

\(\left[ {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\\{{x_3}}\\{{x_4}}\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}{ - \frac{5}{4} - \frac{{3t}}{4}}\\{ - \frac{{11}}{4} - \frac{{5t}}{4}}\\{\frac{{13}}{4} + \frac{{7t}}{4}}\\t\end{array}} \right]\)

Or, it can be written as shown below:

\(\left[ {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\\{{x_3}}\\{{x_4}}\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}{ - \frac{5}{4} - \frac{{3{x_4}}}{4}}\\{ - \frac{{11}}{4} - \frac{{5{x_4}}}{4}}\\{\frac{{13}}{4} + \frac{{7{x_4}}}{4}}\\{{x_4}}\end{array}} \right]\)

When \({x_4} = 1\), the solution is obtained as shown below:

\(\begin{aligned}{c}\left[ {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\\{{x_3}}\\{{x_4}}\end{array}} \right] &= \left[ {\begin{array}{*{20}{c}}{ - \frac{5}{4} - \frac{3}{4}}\\{ - \frac{{11}}{4} - \frac{5}{4}}\\{\frac{{13}}{4} + \frac{7}{4}}\\1\end{array}} \right]\\ &= \left[ {\begin{array}{*{20}{c}}{ - 2}\\{ - 4}\\5\\1\end{array}} \right]\end{aligned}\)

Thus, the solution is \(\left[ {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\\{{x_3}}\\{{x_4}}\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}{ - 2}\\{ - 4}\\5\\1\end{array}} \right]\) or \({\bf{x}} = \left[ {\begin{array}{*{20}{c}}{ - 2}\\{ - 4}\\5\\1\end{array}} \right]\).

Therefore, bis in the range of the transformation. One of the choices for x is \(\left( { - 2, - 4,5,1} \right)\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter


Consider two vectors vโ†’1 andvโ†’2in R3 that are not parallel.

Which vectors inlocalid="1668167992227" โ„3are linear combinations ofvโ†’1andvโ†’2? Describe the set of these vectors geometrically. Include a sketch in your answer.

The solutions \(\left( {x,y,z} \right)\) of a single linear equation \(ax + by + cz = d\)

form a plane in \({\mathbb{R}^3}\) when a, b, and c are not all zero. Construct sets of three linear equations whose graphs (a) intersect in a single line, (b) intersect in a single point, and (c) have no points in common. Typical graphs are illustrated in the figure.

Three planes intersecting in a line.

(a)

Three planes intersecting in a point.

(b)

Three planes with no intersection.

(c)

Three planes with no intersection.

(cโ€™)

Question: If A is a non-zero matrix of the form,[a-bba] then the rank of A must be 2.

An important concern in the study of heat transfer is to determine the steady-state temperature distribution of a thin plate when the temperature around the boundary is known. Assume the plate shown in the figure represents a cross section of a metal beam, with negligible heat flow in the direction perpendicular to the plate. Let \({T_1},...,{T_4}\) denote the temperatures at the four interior nodes of the mesh in the figure. The temperature at a node is approximately equal to the average of the four nearest nodesโ€”to the left, above, to the right, and below. For instance,

\({T_1} = \left( {10 + 20 + {T_2} + {T_4}} \right)/4\), or \(4{T_1} - {T_2} - {T_4} = 30\)

33. Write a system of four equations whose solution gives estimates

for the temperatures \({T_1},...,{T_4}\).

Determine the value(s) of \(a\) such that \(\left\{ {\left( {\begin{aligned}{*{20}{c}}1\\a\end{aligned}} \right),\left( {\begin{aligned}{*{20}{c}}a\\{a + 2}\end{aligned}} \right)} \right\}\) is linearly independent.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free