Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

The solutions \(\left( {x,y,z} \right)\) of a single linear equation \(ax + by + cz = d\)

form a plane in \({\mathbb{R}^3}\) when a, b, and c are not all zero. Construct sets of three linear equations whose graphs (a) intersect in a single line, (b) intersect in a single point, and (c) have no points in common. Typical graphs are illustrated in the figure.

Three planes intersecting in a line.

(a)

Three planes intersecting in a point.

(b)

Three planes with no intersection.

(c)

Three planes with no intersection.

(c’)

Short Answer

Expert verified

(a) The echelon form of the consistent linear system is,,or.

(b) The echelon form of the consistent linear system isthe identity matrix of the order\(3 \times 3\).

(c) The inconsistent linear system of three variables and equations has no common point.

Step by step solution

01

(a) Step 1: Write the condition when the graphs intersect on a single line

Each point on the line is a solution to the given system of equations. And the solution set is infinite if the three planes cross at a single point. As a result, there must be two pivot components in the possible forms.

The echelon form of the consistent linear system is shown below:


Or,

Or,

Here, is the leading entry, and \(\left( * \right)\) can have any value, including 0.

02

(b) Step 2: Write the condition w\(3 \times 3\)hen the graphs intersect at a single point

The system ofthree equations is fulfilled if the three planes cross at a single location. As a consequence, the system is consistent, and it offers a unique solution.

The echelon form that may be produced by solving this system of equations is an identity matrix of the order .

Thus, the echelon form of the consistent linear system is an identity matrix of the order \(3 \times 3\).

03

(c) Step 3: Write the condition when the graphs have no point in common

If there is no common point between the planes, their intersection is not a unique line or point. As a result, there is no way to solve it.

Thus, the inconsistent linear system of three variables and equations has no common point.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A Givens rotation is a linear transformation from \({\mathbb{R}^{\bf{n}}}\) to \({\mathbb{R}^{\bf{n}}}\) used in computer programs to create a zero entry in a vector (usually a column of matrix). The standard matrix of a given rotations in \({\mathbb{R}^{\bf{2}}}\) has the form

\(\left( {\begin{aligned}{*{20}{c}}a&{ - b}\\b&a\end{aligned}} \right)\), \({a^2} + {b^2} = 1\)

Find \(a\) and \(b\) such that \(\left( {\begin{aligned}{*{20}{c}}4\\3\end{aligned}} \right)\) is rotated into \(\left( {\begin{aligned}{*{20}{c}}5\\0\end{aligned}} \right)\).

Let \(T:{\mathbb{R}^n} \to {\mathbb{R}^n}\) be an invertible linear transformation, and let Sand U be functions from \({\mathbb{R}^n}\) into \({\mathbb{R}^n}\) such that \(S\left( {T\left( {\mathop{\rm x}\nolimits} \right)} \right) = {\mathop{\rm x}\nolimits} \) and \(\)\(U\left( {T\left( {\mathop{\rm x}\nolimits} \right)} \right) = {\mathop{\rm x}\nolimits} \) for all x in \({\mathbb{R}^n}\). Show that \(U\left( v \right) = S\left( v \right)\) for all v in \({\mathbb{R}^n}\). This will show that Thas a unique inverse, as asserted in theorem 9. (Hint: Given any v in \({\mathbb{R}^n}\), we can write \({\mathop{\rm v}\nolimits} = T\left( {\mathop{\rm x}\nolimits} \right)\) for some x. Why? Compute \(S\left( {\mathop{\rm v}\nolimits} \right)\) and \(U\left( {\mathop{\rm v}\nolimits} \right)\)).

In Exercises 33 and 34, Tis a linear transformation from \({\mathbb{R}^2}\) into \({\mathbb{R}^2}\). Show that T is invertible and find a formula for \({T^{ - 1}}\).

34. \(T\left( {{x_1},{x_2}} \right) = \left( {6{x_1} - 8{x_2}, - 5{x_1} + 7{x_2}} \right)\)

Question: If A is a non-zero matrix of the form,[a-bba] then the rank of A must be 2.

In a grid of wires, the temperature at exterior mesh points is maintained at constant values, (in°C)as shown in the accompanying figure. When the grid is in thermal equilibrium, the temperature Tat each interior mesh point is the average of the temperatures at the four adjacent points. For example,

T2=T3+T1+200+04

Find the temperatures T1,T2,andT3andwhen the grid is in thermal equilibrium.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free