Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In Exercises 3 and 4, display the following vectors using arrows

on an \(xy\)-graph: u, v, \( - {\bf{v}}\), \( - 2{\bf{v}}\), u + v , u - v, and u - 2v. Notice thatis the vertex of a parallelogram whose other vertices are u, 0, and \( - {\bf{v}}\).

3. u and v as in Exercise 1

Short Answer

Expert verified

The graph of the vectors is shown below:

Step by step solution

01

Write vectors u, v, \( - {\bf{v}}\), and\( - 2{\bf{v}}\)

From Exercise 1, the vectors are \(u = \left[ {\begin{array}{*{20}{c}}{ - 1}\\2\end{array}} \right]\),and \(v = \left[ {\begin{array}{*{20}{c}}{ - 3}\\{ - 1}\end{array}} \right]\).

Vector \( - v\)can be written as\(\left( { - 1} \right)v\).

Obtain the scalar multiple of vector \(v\)by scalar \(\left( { - 1} \right)\) to compute vector \( - v\).

\(\begin{aligned}{c}\left( { - 1} \right)v &= \left( { - 1} \right)\left[ {\begin{array}{*{20}{c}}{ - 3}\\{ - 1}\end{array}} \right]\\ &= \left[ {\begin{array}{*{20}{c}}{\left( { - 1} \right)\left( { - 3} \right)}\\{\left( { - 1} \right)\left( { - 1} \right)}\end{array}} \right]\\ &= \left[ {\begin{array}{*{20}{c}}3\\1\end{array}} \right]\end{aligned}\)

Thus, \( - v = \left[ {\begin{array}{*{20}{c}}3\\1\end{array}} \right]\).

Vector \( - 2v\)can be written as\(\left( { - 2} \right)v\).

Obtain the scalar multiple of vector \(v\)by scalar \(\left( { - 2} \right)\) to compute vector \( - 2v\).

\(\begin{aligned}{c}\left( { - 2} \right)v &= \left( { - 2} \right)\left[ {\begin{array}{*{20}{c}}{ - 3}\\{ - 1}\end{array}} \right]\\ &= \left[ {\begin{array}{*{20}{c}}{\left( { - 2} \right)\left( { - 3} \right)}\\{\left( { - 2} \right)\left( { - 1} \right)}\end{array}} \right]\\ &= \left[ {\begin{array}{*{20}{c}}6\\2\end{array}} \right]\end{aligned}\)

Thus, \( - 2v = \left[ {\begin{array}{*{20}{c}}6\\2\end{array}} \right]\).

02

Write vectors u + v , and u - v

Obtain the vector \(u + v\)by using vectors \(u = \left[ {\begin{array}{*{20}{c}}{ - 1}\\2\end{array}} \right]\),and \(v = \left[ {\begin{array}{*{20}{c}}{ - 3}\\{ - 1}\end{array}} \right]\).

\(\begin{aligned}{c}u + v &= \left[ {\begin{array}{*{20}{c}}{ - 1}\\2\end{array}} \right] + \left[ {\begin{array}{*{20}{c}}{ - 3}\\{ - 1}\end{array}} \right]\\ &= \left[ {\begin{array}{*{20}{c}}{ - 1 + \left( { - 3} \right)}\\{2 + \left( { - 1} \right)}\end{array}} \right]\\ &= \left[ {\begin{array}{*{20}{c}}{ - 1 - 3}\\{2 - 1}\end{array}} \right]\\ &= \left[ {\begin{array}{*{20}{c}}{ - 4}\\1\end{array}} \right]\end{aligned}\)

Thus, the vector is \(u + v = \left[ {\begin{array}{*{20}{c}}{ - 4}\\1\end{array}} \right]\).

Obtain the vector \(u - v\)by using vectors \(u = \left[ {\begin{array}{*{20}{c}}{ - 1}\\2\end{array}} \right]\),and \(v = \left[ {\begin{array}{*{20}{c}}{ - 3}\\{ - 1}\end{array}} \right]\).

\(\begin{aligned}{c}u - v &= \left[ {\begin{array}{*{20}{c}}{ - 1}\\2\end{array}} \right] - \left[ {\begin{array}{*{20}{c}}{ - 3}\\{ - 1}\end{array}} \right]\\ &= \left[ {\begin{array}{*{20}{c}}{ - 1 - \left( { - 3} \right)}\\{2 - \left( { - 1} \right)}\end{array}} \right]\\ &= \left[ {\begin{array}{*{20}{c}}{ - 1 + 3}\\{2 + 1}\end{array}} \right]\\ &= \left[ {\begin{array}{*{20}{c}}2\\3\end{array}} \right]\end{aligned}\)

Thus, the vector is \(u - v = \left[ {\begin{array}{*{20}{c}}2\\3\end{array}} \right]\).

03

Compute vector \(u - 2v\)

Vector \(u - 2v\)can be written as\(u + \left( { - 2} \right)v\).

Obtain the scalar multiple of vector \(v\)by scalar \(\left( { - 2} \right)\), and then add the resultant vector with vector \(u\).

\(\begin{aligned}{c}u + \left( { - 2} \right)v &= \left[ {\begin{array}{*{20}{c}}{ - 1}\\2\end{array}} \right] + \left( { - 2} \right)\left[ {\begin{array}{*{20}{c}}{ - 3}\\{ - 1}\end{array}} \right]\\ &= \left[ {\begin{array}{*{20}{c}}{ - 1}\\2\end{array}} \right] + \left[ {\begin{array}{*{20}{c}}{\left( { - 2} \right)\left( { - 3} \right)}\\{\left( { - 2} \right)\left( { - 1} \right)}\end{array}} \right]\\ &= \left[ {\begin{array}{*{20}{c}}{ - 1}\\2\end{array}} \right] + \left[ {\begin{array}{*{20}{c}}6\\2\end{array}} \right]\\ &= \left[ {\begin{array}{*{20}{c}}{ - 1 + 6}\\{2 + 2}\end{array}} \right]\end{aligned}\)

Solve further to get:

\(u + \left( { - 2} \right)v = \left[ {\begin{array}{*{20}{c}}5\\4\end{array}} \right]\)

Thus, \(u - 2v = \left[ {\begin{array}{*{20}{c}}5\\4\end{array}} \right]\).

04

Display the vectors on a graph

The graph of vectors \(u = \left[ {\begin{array}{*{20}{c}}{ - 1}\\2\end{array}} \right]\), \(v = \left[ {\begin{array}{*{20}{c}}{ - 3}\\{ - 1}\end{array}} \right]\), \( - v = \left[ {\begin{array}{*{20}{c}}3\\1\end{array}} \right]\), \( - 2v = \left[ {\begin{array}{*{20}{c}}6\\2\end{array}} \right]\), \(u - v = \left[ {\begin{array}{*{20}{c}}2\\3\end{array}} \right]\), \(u + v = \left[ {\begin{array}{*{20}{c}}{ - 4}\\1\end{array}} \right]\), and \(u - 2v = \left[ {\begin{array}{*{20}{c}}5\\4\end{array}} \right]\) using arrows are shown below:

Thus, the graph is obtained.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Let \(T:{\mathbb{R}^n} \to {\mathbb{R}^n}\) be an invertible linear transformation, and let Sand U be functions from \({\mathbb{R}^n}\) into \({\mathbb{R}^n}\) such that \(S\left( {T\left( {\mathop{\rm x}\nolimits} \right)} \right) = {\mathop{\rm x}\nolimits} \) and \(\)\(U\left( {T\left( {\mathop{\rm x}\nolimits} \right)} \right) = {\mathop{\rm x}\nolimits} \) for all x in \({\mathbb{R}^n}\). Show that \(U\left( v \right) = S\left( v \right)\) for all v in \({\mathbb{R}^n}\). This will show that Thas a unique inverse, as asserted in theorem 9. (Hint: Given any v in \({\mathbb{R}^n}\), we can write \({\mathop{\rm v}\nolimits} = T\left( {\mathop{\rm x}\nolimits} \right)\) for some x. Why? Compute \(S\left( {\mathop{\rm v}\nolimits} \right)\) and \(U\left( {\mathop{\rm v}\nolimits} \right)\)).

Let \({{\bf{a}}_1}\) \({{\bf{a}}_2}\), and b be the vectors in \({\mathbb{R}^{\bf{2}}}\) shown in the figure, and let \(A = \left( {\begin{aligned}{*{20}{c}}{{{\bf{a}}_1}}&{{{\bf{a}}_2}}\end{aligned}} \right)\). Does the equation \(A{\bf{x}} = {\bf{b}}\) have a solution? If so, is the solution unique? Explain.

In Exercises 31, find the elementary row operation that transforms the first matrix into the second, and then find the reverse row operation that transforms the second matrix into the first.

31. \(\left[ {\begin{array}{*{20}{c}}1&{ - 2}&1&0\\0&5&{ - 2}&8\\4&{ - 1}&3&{ - 6}\end{array}} \right]\), \(\left[ {\begin{array}{*{20}{c}}1&{ - 2}&1&0\\0&5&{ - 2}&8\\0&7&{ - 1}&{ - 6}\end{array}} \right]\)

Consider the dynamical system xโ†’(t+1)=[1.100โ…„]Xโ†’(t).

Sketch a phase portrait of this system for the given values of ฮป:

ฮป=1

In Exercises 15 and 16, list five vectors in Span \(\left\{ {{v_1},{v_2}} \right\}\). For each vector, show the weights on \({{\mathop{\rm v}\nolimits} _1}\) and \({{\mathop{\rm v}\nolimits} _2}\) used to generate the vector and list the three entries of the vector. Do not make a sketch.

16. \({{\mathop{\rm v}\nolimits} _1} = \left[ {\begin{array}{*{20}{c}}3\\0\\2\end{array}} \right],{v_2} = \left[ {\begin{array}{*{20}{c}}{ - 2}\\0\\3\end{array}} \right]\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free