a.
Compute the product of \(\left[ {\begin{array}{*{20}{c}}6&5\\{ - 4}&{ - 3}\\7&6\end{array}} \right]\left[ {\begin{array}{*{20}{c}}2\\{ - 3}\end{array}} \right]\) using the definition as shown below:
\(\begin{aligned}{c}\left[ {\begin{array}{*{20}{c}}6&5\\{ - 4}&{ - 3}\\7&6\end{array}} \right]\left[ {\begin{array}{*{20}{c}}2\\{ - 3}\end{array}} \right] &= 2\left[ {\begin{array}{*{20}{c}}6\\{ - 4}\\7\end{array}} \right] - 3\left[ {\begin{array}{*{20}{c}}5\\{ - 3}\\6\end{array}} \right]\\ &= \left[ {\begin{array}{*{20}{c}}{12}\\{ - 8}\\{14}\end{array}} \right] - \left[ {\begin{array}{*{20}{c}}{15}\\{ - 9}\\{18}\end{array}} \right]\\ &= \left[ {\begin{array}{*{20}{c}}{12 - 15}\\{ - 8 + 9}\\{14 - 18}\end{array}} \right]\\ &= \left[ {\begin{array}{*{20}{c}}{ - 3}\\1\\{ - 4}\end{array}} \right]\end{aligned}\)
b.
Now, compute the value of \(A{\bf{x}}\) by using the row-vector rule as shown below:
\(\begin{aligned}{c}\left[ {\begin{array}{*{20}{c}}6&5\\{ - 4}&{ - 3}\\7&6\end{array}} \right]\left[ {\begin{array}{*{20}{c}}2\\{ - 3}\end{array}} \right] &= \left[ {\begin{array}{*{20}{c}}{6 \cdot 2 + 5 \cdot \left( { - 3} \right)}\\{\left( { - 4} \right) \cdot 2 + \left( { - 3} \right) \cdot \left( { - 3} \right)}\\{7 \cdot 2 + 6 \cdot \left( { - 3} \right)}\end{array}} \right]\\ &= \left[ {\begin{array}{*{20}{c}}{12 - 15}\\{ - 8 + 9}\\{14 - 18}\end{array}} \right]\\ &= \left[ {\begin{array}{*{20}{c}}{ - 3}\\1\\{ - 4}\end{array}} \right]\end{aligned}\)
Thus, the product is \(\left[ {\begin{array}{*{20}{c}}{ - 3}\\1\\{ - 4}\end{array}} \right]\).