Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In Exercises 37–40, let T be the linear transformation whose standard matrix is given. In Exercises 37 and 38, decide if T is a one-to-one mapping. In Exercises 39 and 40, decide if T maps \({\mathbb{R}^{\bf{5}}}\) onto \({\mathbb{R}^{\bf{5}}}\). Justify your answers.

37. \(\left[ {\begin{array}{*{20}{c}}{ - 5}&{10}&{ - 5}&4\\8&3&{ - 4}&7\\4&{ - 9}&5&{ - 3}\\{ - 3}&{ - 2}&5&4\end{array}} \right]\)

Short Answer

Expert verified

Transformation T is not one-to-one.

Step by step solution

01

Identify the condition for one-to-one mapping

The transformation maps\({\mathbb{R}^n}\)one-to-one\({\mathbb{R}^m}\)if at most one solution exists for\(T\left( {\bf{x}} \right) = {\bf{b}}\), and each vector b is in the codomain \({\mathbb{R}^m}\). And this linear transformation, \(T:{\mathbb{R}^n} \to {\mathbb{R}^m}\), has only a trivial solution.

02

Convert the matrix into the row-reduced echelon form

Consider the matrix\(A = \left[ {\begin{array}{*{20}{c}}{ - 5}&{10}&{ - 5}&4\\8&3&{ - 4}&7\\4&{ - 9}&5&{ - 3}\\{ - 3}&{ - 2}&5&4\end{array}} \right]\).

Use the code in the MATLAB to obtain the row-reduced echelon form, as shown below:

\(\begin{array}{l} > > {\rm{ A }} = {\rm{ }}\left[ { - 5{\rm{ }}10{\rm{ }} - 5{\rm{ }}4;{\rm{ }}8{\rm{ }}3{\rm{ }} - 4{\rm{ }}7;{\rm{ }}4{\rm{ }} - 9{\rm{ }}5{\rm{ }} - 3;{\rm{ }} - 3{\rm{ }} - 2{\rm{ }}5{\rm{ }}4} \right];\\ > > {\rm{ U}} = {\rm{rref}}\left( {\rm{A}} \right)\end{array}\)

\(\left[ {\begin{array}{*{20}{c}}{ - 5}&{10}&{ - 5}&4\\8&3&{ - 4}&7\\4&{ - 9}&5&{ - 3}\\{ - 3}&{ - 2}&5&4\end{array}} \right] \sim \left[ {\begin{array}{*{20}{c}}1&0&0&{44/35}\\0&1&0&{79/35}\\0&0&1&{86/35}\\0&0&0&0\end{array}} \right]\)

You can also write it as \(\left[ {\begin{array}{*{20}{c}}1&0&0&{1.2571}\\0&1&0&{2.2571}\\0&0&1&{2.4571}\\0&0&0&0\end{array}} \right]\).

In the obtained matrix, the fourth column does not have a pivot position. So, the solution is non-trivial.

Thus, transformation T is not one-to-one.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Find the general solutions of the systems whose augmented matrices are given as

14. \(\left[ {\begin{array}{*{20}{c}}1&2&{ - 5}&{ - 6}&0&{ - 5}\\0&1&{ - 6}&{ - 3}&0&2\\0&0&0&0&1&0\\0&0&0&0&0&0\end{array}} \right]\).

A Givens rotation is a linear transformation from \({\mathbb{R}^{\bf{n}}}\) to \({\mathbb{R}^{\bf{n}}}\) used in computer programs to create a zero entry in a vector (usually a column of matrix). The standard matrix of a given rotations in \({\mathbb{R}^{\bf{2}}}\) has the form

\(\left( {\begin{aligned}{*{20}{c}}a&{ - b}\\b&a\end{aligned}} \right)\), \({a^2} + {b^2} = 1\)

Find \(a\) and \(b\) such that \(\left( {\begin{aligned}{*{20}{c}}4\\3\end{aligned}} \right)\) is rotated into \(\left( {\begin{aligned}{*{20}{c}}5\\0\end{aligned}} \right)\).

Suppose \({{\mathop{\rm v}\nolimits} _1},{{\mathop{\rm v}\nolimits} _2},{{\mathop{\rm v}\nolimits} _3}\) are distinct points on one line in \({\mathbb{R}^3}\). The line need not pass through the origin. Show that \(\left\{ {{{\mathop{\rm v}\nolimits} _1},{{\mathop{\rm v}\nolimits} _2},{{\mathop{\rm v}\nolimits} _3}} \right\}\) is linearly dependent.

Use Theorem 7 in section 1.7 to explain why the columns of the matrix Aare linearly independent.

\(A = \left( {\begin{aligned}{*{20}{c}}1&0&0&0\\2&5&0&0\\3&6&8&0\\4&7&9&{10}\end{aligned}} \right)\)

In Exercises 13 and 14, determine if \({\mathop{\rm b}\nolimits} \) is a linear combination of the vectors formed from the columns of the matrix \(A\).

14. \(A = \left[ {\begin{array}{*{20}{c}}1&{ - 2}&{ - 6}\\0&3&7\\1&{ - 2}&5\end{array}} \right],{\mathop{\rm b}\nolimits} = \left[ {\begin{array}{*{20}{c}}{11}\\{ - 5}\\9\end{array}} \right]\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free