Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In Exercises 37 and 38, the given matrix determines a linear

transformation \(T\). Find all x such that \(T\left( {\bf{x}} \right) = 0\).

37. \(\left[ {\begin{array}{*{20}{c}}4&{ - 2}&5&{ - 5}\\{ - 9}&7&{ - 8}&0\\{ - 6}&4&5&3\\5&{ - 3}&8&{ - 4}\end{array}} \right]\)

Short Answer

Expert verified

The values of x such that \(T\left( {\bf{x}} \right) = 0\) are the multiples of \(\left( {7,9,0,2} \right)\).

Step by step solution

01

Convert the matrix into the row reduction echelon form

Consider matrix \(A = \left[ {\begin{array}{*{20}{c}}4&{ - 2}&5&{ - 5}\\{ - 9}&7&{ - 8}&0\\{ - 6}&4&5&3\\5&{ - 3}&8&{ - 4}\end{array}} \right]\).

Use code in the MATLAB to obtain the row-reduced echelon form as shown below:

\(\begin{array}{l} > > {\rm{ A }} = {\rm{ }}\left[ {4{\rm{ }} - 2{\rm{ 5 }} - {\rm{5}};{\rm{ }} - 9{\rm{ }}7{\rm{ }} - 8{\rm{ 0}};{\rm{ }} - {\rm{6 4 5 3}};{\rm{ 5 }} - 3{\rm{ 8 }} - {\rm{4 }}} \right];\\ > > {\rm{ U}} = {\rm{rref}}\left( {\rm{A}} \right)\end{array}\)

\(\left[ {\begin{array}{*{20}{c}}4&{ - 2}&5&{ - 5}\\{ - 9}&7&{ - 8}&0\\{ - 6}&4&5&3\\5&{ - 3}&8&{ - 4}\end{array}} \right] \sim \left[ {\begin{array}{*{20}{c}}1&0&0&{ - 7/2}\\0&1&0&{ - 9/2}\\0&0&1&0\\0&0&0&0\end{array}} \right]\)

02

Write the matrix into the system of equations

It is observed that there are four columns in the given matrix, which means there should be four entries in vector x.

Thus, the equation \(A{\bf{x}} = 0\) can be written as shown below:

\(\begin{array}{c}A{\bf{x}} = 0\\\left[ {\begin{array}{*{20}{c}}1&0&0&{ - 7/2}\\0&1&0&{ - 9/2}\\0&0&1&0\\0&0&0&0\end{array}} \right]\left[ {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\\{{x_3}}\\{{x_4}}\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}0\\0\\0\\0\end{array}} \right]\end{array}\)

Write the above matrix equation in the system of equations as shown below:

\(\begin{aligned}{c}{x_1}\left[ {\begin{array}{*{20}{c}}1\\0\\0\\0\end{array}} \right] + {x_2}\left[ {\begin{array}{*{20}{c}}0\\1\\0\\0\end{array}} \right] + {x_3}\left[ {\begin{array}{*{20}{c}}0\\0\\1\\0\end{array}} \right] + {x_4}\left[ {\begin{array}{*{20}{c}}{ - 7/2}\\{ - 9/2}\\0\\0\end{array}} \right] &= \left[ {\begin{array}{*{20}{c}}0\\0\\0\\0\end{array}} \right]\\\left[ {\begin{array}{*{20}{c}}{{x_1} + \left( 0 \right){x_2} + \left( 0 \right){x_3} + \left( { - 7/2} \right){x_4}}\\{\left( 0 \right){x_1} + {x_2} + \left( 0 \right){x_3} + \left( { - 9/2} \right){x_4}}\\{\left( 0 \right){x_1} + \left( 0 \right){x_2} + {x_3} + \left( 0 \right){x_4}}\\{\left( 0 \right){x_1} + \left( 0 \right){x_2} + \left( 0 \right){x_3} + \left( 0 \right){x_4}}\end{array}} \right] &= \left[ {\begin{array}{*{20}{c}}0\\0\\0\\0\end{array}} \right]\end{aligned}\)

So, the system of equations is obtained as shown below:

\(\begin{aligned}{c}{x_1} - \frac{7}{2}{x_4} &= 0\\{x_2} - \frac{9}{2}{x_4} &= 0\\{x_3} &= 0\end{aligned}\)

03

Separate the variables into free and basic variables

From the above equations, \({x_1}\), \({x_2}\), and \({x_3}\) correspond to the pivot positions. So, \({x_1}\), \({x_2}\), and \({x_3}\) are the basic variables, and \({x_4}\) is a free variable.

Let \({x_4} = t\).

04

Obtain the value of the basic variables in parametric forms

Substitute the value \({x_4} = t\) in the equation \({x_1} - \frac{7}{2}{x_4} = 0\) to obtain the general solution.

\(\begin{array}{l}{x_1} - \frac{7}{2}\left( t \right) = 0\\{x_1} = \frac{{7t}}{2}\end{array}\)

Substitute the value \({x_4} = t\) in the equation \({x_2} - \frac{9}{2}{x_4} = 0\) to obtain the general solution.

\(\begin{aligned}{c}{x_2} - \frac{9}{2}\left( t \right) &= 0\\{x_2} &= \frac{{9t}}{2}\end{aligned}\)

05

Write the solution in a parametric form

Obtain the vector in a parametric form by using \({x_1} = \frac{{7t}}{2}\), \({x_2} = \frac{{9t}}{2}\), \({x_3} = 0\), and \({x_4} = t\).

\(\begin{aligned}{c}\left[ {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\\{{x_3}}\\{{x_4}}\end{array}} \right] &= \left[ {\begin{array}{*{20}{c}}{7t/2}\\{9t/2}\\0\\t\end{array}} \right]\\ &= t\left[ {\begin{array}{*{20}{c}}{7/2}\\{9/2}\\0\\1\end{array}} \right]\end{aligned}\)

Or, it can be written as shown below:

\(\left[ {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\\{{x_3}}\\{{x_4}}\end{array}} \right] = \frac{{{x_4}}}{2}\left[ {\begin{array}{*{20}{c}}7\\9\\0\\2\end{array}} \right]\)

So, the solution in the parametric vector form is \(\left[ {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\\{{x_3}}\\{{x_4}}\end{array}} \right] = \frac{{{x_4}}}{2}\left[ {\begin{array}{*{20}{c}}7\\9\\0\\2\end{array}} \right]\) or \({\bf{x}} = \frac{{{x_4}}}{2}\left[ {\begin{array}{*{20}{c}}7\\9\\0\\2\end{array}} \right]\).

Thus, the values of x such that \(T\left( {\bf{x}} \right) = 0\) are the multiples of \(\left( {7,9,0,2} \right)\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Consider a dynamical systemwith two components. The accompanying sketch shows the initial state vectorxโ†’0and two eigen vectorsฯ…1โ†’โ€Šโ€Šandโ€Šโ€Šฯ…2โ†’of A (with eigen values ฮป1โ†’andฮป2โ†’respectively). For the given values ofฮป1โ†’andฮป2โ†’, draw a rough trajectory. Consider the future and the past of the system.

ฮป1โ†’=0.9,ฮป2โ†’=0.9

Let \({{\mathop{\rm v}\nolimits} _1} = \left[ {\begin{array}{*{20}{c}}1\\0\\{ - 2}\end{array}} \right],{v_2} = \left[ {\begin{array}{*{20}{c}}{ - 3}\\1\\8\end{array}} \right],\) and \({\rm{y = }}\left[ {\begin{array}{*{20}{c}}h\\{ - 5}\\{ - 3}\end{array}} \right]\). For what values(s) of \(h\) is \(y\) in the plane generated by \({{\mathop{\rm v}\nolimits} _1}\) and \({{\mathop{\rm v}\nolimits} _2}\)

In Exercises 13 and 14, determine if \({\mathop{\rm b}\nolimits} \) is a linear combination of the vectors formed from the columns of the matrix \(A\).

14. \(A = \left[ {\begin{array}{*{20}{c}}1&{ - 2}&{ - 6}\\0&3&7\\1&{ - 2}&5\end{array}} \right],{\mathop{\rm b}\nolimits} = \left[ {\begin{array}{*{20}{c}}{11}\\{ - 5}\\9\end{array}} \right]\)

Question: Determine whether the statements that follow are true or false, and justify your answer.

16: There exists a 2x2 matrix such that

A[11]=[12]andA[22]=[21].

Give a geometric description of span \(\left\{ {{v_1},{v_2}} \right\}\) for the vectors \({{\mathop{\rm v}\nolimits} _1} = \left[ {\begin{array}{*{20}{c}}8\\2\\{ - 6}\end{array}} \right]\) and \({{\mathop{\rm v}\nolimits} _2} = \left[ {\begin{array}{*{20}{c}}{12}\\3\\{ - 9}\end{array}} \right]\).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free