Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Determine if the columns of the matrix span \({R^4}\).

\(\left[ {\begin{array}{*{20}{c}}7&2&{ - 5}&8\\{ - 5}&{ - 3}&4&{ - 9}\\6&{10}&{ - 2}&7\\{ - 7}&9&2&{15}\end{array}} \right]\)

Short Answer

Expert verified

The columns of the matrix are not in span \({R^4}\) .

Step by step solution

01

Solve matrix

First, resolve the matrix into a pivot matrix.

Apply row operation \({R_2} \to {R_2} + \frac{5}{7}{R_1}\).

\(\left[ {\begin{array}{*{20}{c}}7&2&{ - 5}&8\\0&{ - \frac{{11}}{7}}&{\frac{3}{7}}&{ - \frac{{23}}{7}}\\6&{10}&{ - 2}&7\\{ - 7}&9&2&{15}\end{array}} \right]\)

Now, apply row operation \({R_3} \to {R_3} - \frac{6}{7}{R_1}\) again in the above matrix.

\(\left[ {\begin{array}{*{20}{c}}7&2&{ - 5}&8\\0&{ - \frac{{11}}{7}}&{\frac{3}{7}}&{ - \frac{{23}}{7}}\\0&{\frac{{58}}{7}}&{\frac{{16}}{7}}&{\frac{1}{7}}\\{ - 7}&9&2&{15}\end{array}} \right]\)

02

Row operation in the matrix

Apply row operation \({R_4} \to {R_4} + {R_1}\) in the above matrix.

\(\left[ {\begin{array}{*{20}{c}}7&2&{ - 5}&8\\0&{ - \frac{{11}}{7}}&{\frac{3}{7}}&{ - \frac{{23}}{7}}\\0&{\frac{{58}}{7}}&{\frac{{16}}{7}}&{\frac{1}{7}}\\0&{11}&{ - 3}&{23}\end{array}} \right]\)

Apply row operation \({R_3} \to {R_3} + \frac{{58}}{{11}}{R_2}\) in the above matrix.

\(\left[ {\begin{array}{*{20}{c}}7&2&{ - 5}&8\\0&{ - \frac{{11}}{7}}&{\frac{3}{7}}&{ - \frac{{23}}{7}}\\0&0&{\frac{{50}}{{11}}}&{\frac{{ - 189}}{{11}}}\\0&{11}&{ - 3}&{23}\end{array}} \right]\)

03

Pivot of a matrix

Apply row operation \({R_4} \to {R_4} + 7{R_2}\) in the above matrix to get the pivot of a matrix.

\(\left[ {\begin{array}{*{20}{c}}7&2&{ - 5}&8\\0&{ - \frac{{11}}{7}}&{\frac{3}{7}}&{ - \frac{{23}}{7}}\\0&0&{\frac{{50}}{{11}}}&{\frac{{ - 189}}{{11}}}\\0&0&0&0\end{array}} \right]\)

04

Determine the span

The above matrix in terms of pivot columns is represented as:


The matrix does not have a pivot in every row.

Hence, the columns of the matrix are not in span \({R^4}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Let \(T:{\mathbb{R}^n} \to {\mathbb{R}^n}\) be an invertible linear transformation, and let Sand U be functions from \({\mathbb{R}^n}\) into \({\mathbb{R}^n}\) such that \(S\left( {T\left( {\mathop{\rm x}\nolimits} \right)} \right) = {\mathop{\rm x}\nolimits} \) and \(\)\(U\left( {T\left( {\mathop{\rm x}\nolimits} \right)} \right) = {\mathop{\rm x}\nolimits} \) for all x in \({\mathbb{R}^n}\). Show that \(U\left( v \right) = S\left( v \right)\) for all v in \({\mathbb{R}^n}\). This will show that Thas a unique inverse, as asserted in theorem 9. (Hint: Given any v in \({\mathbb{R}^n}\), we can write \({\mathop{\rm v}\nolimits} = T\left( {\mathop{\rm x}\nolimits} \right)\) for some x. Why? Compute \(S\left( {\mathop{\rm v}\nolimits} \right)\) and \(U\left( {\mathop{\rm v}\nolimits} \right)\)).

The solutions \(\left( {x,y,z} \right)\) of a single linear equation \(ax + by + cz = d\)

form a plane in \({\mathbb{R}^3}\) when a, b, and c are not all zero. Construct sets of three linear equations whose graphs (a) intersect in a single line, (b) intersect in a single point, and (c) have no points in common. Typical graphs are illustrated in the figure.

Three planes intersecting in a line.

(a)

Three planes intersecting in a point.

(b)

Three planes with no intersection.

(c)

Three planes with no intersection.

(cโ€™)

Question: If A is a non-zero matrix of the form,[a-bba] then the rank of A must be 2.

Let \(u = \left[ {\begin{array}{*{20}{c}}2\\{ - 1}\end{array}} \right]\) and \(v = \left[ {\begin{array}{*{20}{c}}2\\1\end{array}} \right]\). Show that \(\left[ {\begin{array}{*{20}{c}}h\\k\end{array}} \right]\) is in Span \(\left\{ {u,v} \right\}\) for all \(h\) and\(k\).

In Exercises 33 and 34, Tis a linear transformation from \({\mathbb{R}^2}\) into \({\mathbb{R}^2}\). Show that T is invertible and find a formula for \({T^{ - 1}}\).

34. \(T\left( {{x_1},{x_2}} \right) = \left( {6{x_1} - 8{x_2}, - 5{x_1} + 7{x_2}} \right)\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free