Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Let \(H = Span\left\{ {{u_{\bf{1}}},{u_{\bf{2}}},{u_{\bf{3}}}} \right\}\) and \(K = Span\left\{ {{v_{\bf{1}}},{v_{\bf{2}}},{v_{\bf{3}}}} \right\}\), where

\({u_1} = \left( {\begin{array}{*{20}{c}}{\bf{1}}\\{\bf{2}}\\{\bf{0}}\\{ - {\bf{1}}}\end{array}} \right)\),\({u_{\bf{2}}} = \left( {\begin{array}{*{20}{c}}{\bf{0}}\\{\bf{2}}\\{ - {\bf{1}}}\\{\bf{1}}\end{array}} \right)\),\({u_{\bf{3}}} = \left( {\begin{array}{*{20}{c}}{\bf{3}}\\{\bf{4}}\\{\bf{1}}\\{ - {\bf{4}}}\end{array}} \right)\),

\({v_{\bf{1}}} = \left( {\begin{array}{*{20}{c}}{ - {\bf{2}}}\\{ - {\bf{2}}}\\{ - {\bf{1}}}\\{\bf{3}}\end{array}} \right)\),\({v_{\bf{2}}} = \left( {\begin{array}{*{20}{c}}{\bf{2}}\\{\bf{3}}\\{\bf{2}}\\{ - {\bf{6}}}\end{array}} \right)\),\({v_{\bf{3}}} = \left( {\begin{array}{*{20}{c}}{ - {\bf{1}}}\\{\bf{4}}\\{\bf{6}}\\{ - {\bf{2}}}\end{array}} \right)\)

Find bases for H, K, and \(H + K\).

Short Answer

Expert verified

The set \(\left\{ {u{ & _1},{u_2}} \right\}\) is a basis for H, \(\left\{ {{v_1},{v_2},{v_3}} \right\}\) is a basis for K, and \(\left\{ {{u_1},{u_2},{v_2},{v_3}} \right\}\) is a basis for \(H + K\).

Step by step solution

01

Use the spanning set theorem

By the spanning set theorem, the subset of \(\left\{ {{u_1},{u_2},{u_3}} \right\}\) forms a basis for H. Similarly, the subset of \(\left\{ {{v_1},{v_2},{v_3}} \right\}\) forms a basis for K.

02

Compute the basis for H

Use the row-reduced echelon form to identify the pivot columns.

\(\left( {\begin{array}{*{20}{c}}{{u_1}}&{{u_2}}&{{u_3}}\end{array}} \right) = \left( {\begin{array}{*{20}{c}}1&0&3\\2&2&4\\0&{ - 1}&1\\{ - 1}&1&{ - 4}\end{array}} \right)\)

Add \( - 2\) times row 1 to row 2, and add row 1 to row 4.

\( \sim \left( {\begin{array}{*{20}{c}}1&0&3\\0&2&{ - 2}\\0&{ - 1}&1\\0&1&{ - 1}\end{array}} \right)\)

Divide row 2 by 2, and add row 3 to row 4.

\( \sim \left( {\begin{array}{*{20}{c}}1&0&3\\0&1&{ - 1}\\0&{ - 1}&1\\0&0&0\end{array}} \right)\)

Now, add rows 2 and 3.

\( \sim \left( {\begin{array}{*{20}{c}}1&0&3\\0&1&{ - 1}\\0&0&0\\0&0&0\end{array}} \right)\)

Thus \(\left\{ {u{ & _1},{u_2}} \right\}\) is a basis for H.

03

Compute the basis for K

Use the row-reduced echelon form to identify the pivot columns.

\(\left( {\begin{array}{*{20}{c}}{{v_1}}&{{v_2}}&{{v_3}}\end{array}} \right) = \left( {\begin{array}{*{20}{c}}{ - 2}&2&{ - 1}\\{ - 2}&3&4\\{ - 1}&2&6\\3&{ - 6}&{ - 2}\end{array}} \right)\)

Divide row 1 by \( - 2\).

\( \sim \left( {\begin{array}{*{20}{c}}1&{ - 1}&{0.5}\\{ - 2}&3&4\\{ - 1}&2&6\\3&{ - 6}&{ - 2}\end{array}} \right)\)

Add 2 times row 1 to row . Then add 1 time row 1 to row 3.

Again add \( - 3\) times row 1 to row 4.

\( \sim \left( {\begin{array}{*{20}{c}}1&{ - 1}&{0.5}\\0&1&5\\0&1&{6.5}\\0&{ - 3}&{ - 3.5}\end{array}} \right)\)

Add \( - 1\) time row 2 to row 3, and add 3 times row 2 to row 3 .

\( \sim \left( {\begin{array}{*{20}{c}}1&{ - 1}&{0.5}\\0&1&5\\0&0&{1.5}\\0&0&{ - 11.5}\end{array}} \right)\)

Finally, add row 2 to row 1.

\( \sim \left( {\begin{array}{*{20}{c}}1&0&{5.5}\\0&1&5\\0&0&{1.5}\\0&0&{ - 11.5}\end{array}} \right)\)

Divide row 3 by \(1.5\).

\( \sim \left( {\begin{array}{*{20}{c}}1&0&{5.5}\\0&1&5\\0&0&1\\0&0&{ - 11.5}\end{array}} \right)\)

Add \( - 5.5\) times row 3 to row 1. Then add \( - 5\) times row 3 to row 2. Again add \(11.5\) times row 3 to row 4.

\( \sim \left( {\begin{array}{*{20}{c}}1&0&0\\0&1&0\\0&0&1\\0&0&0\end{array}} \right)\)

Thus, \(\left\{ {{v_1},{v_2},{v_3}} \right\}\) is a basis for K.

04

Compute the basis for \(H + K\)

Note that \(H + K = {\rm{Span}}\left\{ {{u_1},{u_2},{u_3},{v_1},{v_2},{v_3}} \right\}\).

Use the row-reduced echelon form to identify the pivot columns.

\(\left( {\begin{array}{*{20}{c}}{{u_1}}&{{u_2}}&{{u_3}}&{{v_1}}&{{v_2}}&{{v_3}}\end{array}} \right) = \left( {\begin{array}{*{20}{c}}1&0&3&{ - 2}&2&{ - 1}\\2&2&4&{ - 2}&3&4\\0&{ - 1}&1&{ - 1}&2&6\\{ - 1}&1&{ - 4}&3&{ - 6}&{ - 2}\end{array}} \right)\)

Add \( - 2\) times row 1 to row 2, and add 1 time row 1 to row 4.

\( \sim \left( {\begin{array}{*{20}{c}}1&0&3&{ - 2}&2&{ - 1}\\0&2&{ - 2}&2&{ - 1}&6\\0&{ - 1}&1&{ - 1}&2&6\\0&1&{ - 1}&1&{ - 4}&{ - 3}\end{array}} \right)\)

Divide row 2 by 2.

\( \sim \left( {\begin{array}{*{20}{c}}1&0&3&{ - 2}&2&{ - 1}\\0&1&{ - 1}&1&{ - 0.5}&3\\0&{ - 1}&1&{ - 1}&2&6\\0&1&{ - 1}&1&{ - 4}&{ - 3}\end{array}} \right)\)

Add 1 time row 2 to row 3, and \( - 1\) time row 2 to row 4.

\( \sim \left( {\begin{array}{*{20}{c}}1&0&3&{ - 2}&2&{ - 1}\\0&1&{ - 1}&1&{ - 0.5}&3\\0&0&0&0&{1.5}&9\\0&0&0&0&{ - 3.5}&{ - 6}\end{array}} \right)\)

Divide row 3 by \(1.5\).

\( \sim \left( {\begin{array}{*{20}{c}}1&0&3&{ - 2}&2&{ - 1}\\0&1&{ - 1}&1&{ - 0.5}&3\\0&0&0&0&1&6\\0&0&0&0&{ - 3.5}&{ - 6}\end{array}} \right)\)

Add \(3.5\) times row 3 to row 4. Then add \(0.5\) time row 3 to row 2. Again add \( - 2\) times row 3 to row 1.

\( \sim \left( {\begin{array}{*{20}{c}}1&0&3&{ - 2}&0&{ - 13}\\0&1&{ - 1}&1&0&6\\0&0&0&0&1&6\\0&0&0&0&0&{15}\end{array}} \right)\)

Divide row 4 by 15.

\( \sim \left( {\begin{array}{*{20}{c}}1&0&3&{ - 2}&0&{ - 13}\\0&1&{ - 1}&1&0&6\\0&0&0&0&1&6\\0&0&0&0&0&1\end{array}} \right)\)

Add \( - 6\) times row 4 to row 3. Then add \( - 6\) times row 4 to row 2. Again add 13 times row 4 to row 1.

\( \sim \left( {\begin{array}{*{20}{c}}1&0&3&{ - 2}&0&0\\0&1&{ - 1}&1&0&0\\0&0&0&0&1&0\\0&0&0&0&0&1\end{array}} \right)\)

Thus, \(\left\{ {{u_1},{u_2},{v_2},{v_3}} \right\}\) is a basis for \(H + K\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Suppose \(a,b,c,\) and \(d\) are constants such that \(a\) is not zero and the system below is consistent for all possible values of \(f\) and \(g\). What can you say about the numbers \(a,b,c,\) and \(d\)? Justify your answer.

28. \(\begin{array}{l}a{x_1} + b{x_2} = f\\c{x_1} + d{x_2} = g\end{array}\)

Let \({{\bf{a}}_1}\) \({{\bf{a}}_2}\), and b be the vectors in \({\mathbb{R}^{\bf{2}}}\) shown in the figure, and let \(A = \left( {\begin{aligned}{*{20}{c}}{{{\bf{a}}_1}}&{{{\bf{a}}_2}}\end{aligned}} \right)\). Does the equation \(A{\bf{x}} = {\bf{b}}\) have a solution? If so, is the solution unique? Explain.

Suppose a linear transformation \(T:{\mathbb{R}^n} \to {\mathbb{R}^n}\) has the property that \(T\left( {\mathop{\rm u}\nolimits} \right) = T\left( {\mathop{\rm v}\nolimits} \right)\) for some pair of distinct vectors u and v in \({\mathbb{R}^n}\). Can Tmap \({\mathbb{R}^n}\) onto \({\mathbb{R}^n}\)? Why or why not?

Determine which of the matrices in Exercises 7โ€“12areorthogonal. If orthogonal, find the inverse.

11. \(\left( {\begin{aligned}{{}}{2/3}&{2/3}&{1/3}\\0&{1/3}&{ - 2/3}\\{5/3}&{ - 4/3}&{ - 2/3}\end{aligned}} \right)\)

In Exercise 23 and 24, make each statement True or False. Justify each answer.

24.

a. Any list of five real numbers is a vector in \({\mathbb{R}^5}\).

b. The vector \({\mathop{\rm u}\nolimits} \) results when a vector \({\mathop{\rm u}\nolimits} - v\) is added to the vector \({\mathop{\rm v}\nolimits} \).

c. The weights \({{\mathop{\rm c}\nolimits} _1},...,{c_p}\) in a linear combination \({c_1}{v_1} + \cdot \cdot \cdot + {c_p}{v_p}\) cannot all be zero.

d. When are \({\mathop{\rm u}\nolimits} \) nonzero vectors, Span \(\left\{ {u,v} \right\}\) contains the line through \({\mathop{\rm u}\nolimits} \) and the origin.

e. Asking whether the linear system corresponding to an augmented matrix \(\left[ {\begin{array}{*{20}{c}}{{{\rm{a}}_{\rm{1}}}}&{{{\rm{a}}_{\rm{2}}}}&{{{\rm{a}}_{\rm{3}}}}&{\rm{b}}\end{array}} \right]\) has a solution amounts to asking whether \({\mathop{\rm b}\nolimits} \) is in Span\(\left\{ {{a_1},{a_2},{a_3}} \right\}\).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free