\(\begin{array}{c}1 \cdot \left[ {\begin{array}{*{20}{c}}{{a_1}}\\{{b_1}}\\{{c_1}}\end{array}} \right] + 1 \cdot \left[ {\begin{array}{*{20}{c}}{{a_2}}\\{{b_2}}\\{{c_2}}\end{array}} \right] + 1 \cdot \left[ {\begin{array}{*{20}{c}}{{a_3}}\\{{b_3}}\\{{c_3}}\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}0\\0\\0\end{array}} \right]\\\left[ {\begin{array}{*{20}{c}}{{a_1} + {a_2} + {a_3}}\\{{b_1} + {b_2} + {b_3}}\\{{c_1} + {c_2} + {c_3}}\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}0\\0\\0\end{array}} \right]\end{array}\)
Thus, the solution set is shown below:
\(\begin{array}{l}{a_1} + {a_2} + {a_3} = 0\\{b_1} + {b_2} + {b_3} = 0\\{c_1} + {c_2} + {c_3} = 0\end{array}\)
Or, it can also be represented as shown below:
\[\begin{array}{l}{a_1} = - {a_2} - {a_3}\\{b_1} = - {b_2} - {b_3}\\{c_1} = - {c_2} - {c_3}\end{array}\]