Solve the equation \(\left[ {\begin{array}{*{20}{c}}4&{ - 6}\\{ - 8}&{12}\\6&{ - 9}\end{array}} \right]\left[ {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\end{array}} \right] = 0\) by inspection.
\({x_1}\left[ {\begin{array}{*{20}{c}}4\\{ - 8}\\6\end{array}} \right] + {x_2}\left[ {\begin{array}{*{20}{c}}{ - 6}\\{12}\\{ - 9}\end{array}} \right] = 0\)
From the two columns \(\left[ {\begin{array}{*{20}{c}}4\\{ - 8}\\6\end{array}} \right]\) and \(\left[ {\begin{array}{*{20}{c}}{ - 6}\\{12}\\{ - 9}\end{array}} \right]\), it is observed that column \(\left[ {\begin{array}{*{20}{c}}{ - 6}\\{12}\\{ - 9}\end{array}} \right]\) is \( - \frac{3}{2}\) times column \(\left[ {\begin{array}{*{20}{c}}4\\{ - 8}\\6\end{array}} \right]\).
By inspection, the values of \({x_1}\) and \({x_2}\) are 3 and 2, respectively. Thus, \({\bf{x}} = \left[ {\begin{array}{*{20}{c}}3\\2\end{array}} \right]\).
Therefore, one nontrivial solution is 3 and 2.