Let\(T:{\mathbb{R}^n} \to {\mathbb{R}^n}\) be a linear transformation and Abe the standard matrix for T. Then, according toTheorem 9,Tis invertible if and only if Ais an invertible matrix. The linear transformation S,given by \(S\left( x \right) = {A^{ - 1}}{\mathop{\rm x}\nolimits} \), is a unique function satisfying the equations
- \(S\left( {T\left( {\mathop{\rm x}\nolimits} \right)} \right) = {\mathop{\rm x}\nolimits} \)for all x in \({\mathbb{R}^n}\), and
- \(T\left( {S\left( {\mathop{\rm x}\nolimits} \right)} \right) = {\mathop{\rm x}\nolimits} \)for all x in \({\mathbb{R}^n}\).
According to theorem 9, transformation Tis invertible and the standard matrix of \({T^{ - 1}}\) is \({A^{ - 1}}\).
Use the formula for \(2 \times 2\) inverse.
\(\begin{aligned}{c}{A^{ - 1}} = \frac{1}{{35 - 36}}\left( {\begin{aligned}{*{20}{c}}{ - 7}&{ - 9}\\{ - 4}&{ - 5}\end{aligned}} \right)\\ = \frac{1}{{ - 1}}\left( {\begin{aligned}{*{20}{c}}{ - 7}&{ - 9}\\{ - 4}&{ - 5}\end{aligned}} \right)\\ = \left( {\begin{aligned}{*{20}{c}}7&9\\4&5\end{aligned}} \right)\end{aligned}\)
Therefore,
\(\begin{aligned}{c}{T^{ - 1}}\left( {{x_1},{x_2}} \right) = {A^{ - 1}}x\\ = \left( {\begin{aligned}{*{20}{c}}7&9\\4&5\end{aligned}} \right)\left( {\begin{aligned}{*{20}{c}}{{x_1}}\\{{x_2}}\end{aligned}} \right)\\ = \left( {7{x_1} + 9{x_2},4{x_1} + 5{x_2}} \right)\end{aligned}\)
Thus, the formula for \({T^{ - 1}}\) is \({T^{ - 1}}\left( {{x_1},{x_2}} \right) = \left( {7{x_1} + 9{x_2},4{x_1} + 5{x_2}} \right)\).