Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Suppose Ais an \(n \times n\) matrix with the property that the equation \(Ax = 0\)has only the trivial solution. Without using the Invertible Matrix Theorem, explain directly why the equation \(Ax = b\) must have a solution for each b in \({\mathbb{R}^n}\).

Short Answer

Expert verified

The equation \(Ax = b\) has a solution for each b in \({\mathbb{R}^n}\).

Step by step solution

01

Show that the equation \(Ax = {\mathop{\rm b}\nolimits} \) has only a trivial solution

If \(Ax = 0\) has only a trivial solution, A must have a pivot in each of its \(n\) columns.

02

Explain that the equation Ax = b has exactly one solution

Theorem 4states that if \(A\) is an \({\rm{m}} \times n\) matrix, then the following statements are equivalent.

  1. For each \({\mathop{\rm b}\nolimits} \) in \({\mathbb{R}^m}\), the equation \(Ax = b\) has a solution.
  2. Each \({\mathop{\rm b}\nolimits} \) in \({\mathbb{R}^m}\) is a linear combination of the columns of A.
  3. The columns of \(A\) span .
  4. \(A\)has a pivot position in every row.

Since Ais a square matrix, itmust have a pivot in each row. According to theorem 4, the equation \(Ax = b\) has a solution for each b in \({\mathbb{R}^n}\).

Thus, the equation \(Ax = b\) has a solution for each b in \({\mathbb{R}^n}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Consider the problem of determining whether the following system of equations is consistent for all \({b_1},{b_2},{b_3}\):

\(\begin{aligned}{c}{\bf{2}}{x_1} - {\bf{4}}{x_2} - {\bf{2}}{x_3} = {b_1}\\ - {\bf{5}}{x_1} + {x_2} + {x_3} = {b_2}\\{\bf{7}}{x_1} - {\bf{5}}{x_2} - {\bf{3}}{x_3} = {b_3}\end{aligned}\)

  1. Define appropriate vectors, and restate the problem in terms of Span \(\left\{ {{{\bf{v}}_1},{{\bf{v}}_2},{{\bf{v}}_3}} \right\}\). Then solve that problem.
  1. Define an appropriate matrix, and restate the problem using the phrase “columns of A.”
  1. Define an appropriate linear transformation T using the matrix in (b), and restate the problem in terms of T.

Question: If A is a non-zero matrix of the form,[a-bba] then the rank of A must be 2.

In Exercises 10, write a vector equation that is equivalent tothe given system of equations.

10. \(4{x_1} + {x_2} + 3{x_3} = 9\)

\(\begin{array}{c}{x_1} - 7{x_2} - 2{x_3} = 2\\8{x_1} + 6{x_2} - 5{x_3} = 15\end{array}\)

In Exercise 19 and 20, choose \(h\) and \(k\) such that the system has

a. no solution

b. unique solution

c. many solutions.

Give separate answers for each part.

19. \(\begin{array}{l}{x_1} + h{x_2} = 2\\4{x_1} + 8{x_2} = k\end{array}\)

Consider a dynamical system x(t+1)=Ax(t)with two components. The accompanying sketch shows the initial state vector x0and two eigenvectors υ1andυ2of A (with eigen values λ1andλ2 respectively). For the given values of λ1andλ2, draw a rough trajectory. Consider the future and the past of the system.

λ1=1.2,λ2=1.1

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free