Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Exercises 31 and 32 should be solved without performing row operations. [Hint: Write \(Ax = 0\) as a vector equation.]

31. Given \(A = \left[ {\begin{array}{*{20}{c}}2&3&5\\{ - 5}&1&{ - 4}\\{ - 3}&{ - 1}&{ - 4}\\1&0&1\end{array}} \right]\) . Observe that the third column is the sum of the first two columns. Find a nontrivial solution of \(Ax = 0\).

Short Answer

Expert verified

\(Ax = 0\) is a matrix equation for \(x = \left( {1,1, - 1} \right)\).

Step by step solution

01

Write the matrix as an expression

Matrix\(A\)can be written as the expression\(A = \left[ {\begin{array}{*{20}{c}}{{a_1}}&{{a_2}}&{{a_3}}\end{array}} \right]\).

The third column is the sum of the first two columns, which indicates that \({a_3} = {a_1} + {a_2}\).

02

Rewrite the given equation

Rewrite the equation\({a_3} = {a_1} + {a_2}\)as\({a_1} + {a_2} - {a_3} = 0\).

Thus, \(Ax = 0\) is a matrix equation for \(x = \left( {1,1, - 1} \right)\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Let \(T:{\mathbb{R}^n} \to {\mathbb{R}^n}\) be an invertible linear transformation, and let Sand U be functions from \({\mathbb{R}^n}\) into \({\mathbb{R}^n}\) such that \(S\left( {T\left( {\mathop{\rm x}\nolimits} \right)} \right) = {\mathop{\rm x}\nolimits} \) and \(\)\(U\left( {T\left( {\mathop{\rm x}\nolimits} \right)} \right) = {\mathop{\rm x}\nolimits} \) for all x in \({\mathbb{R}^n}\). Show that \(U\left( v \right) = S\left( v \right)\) for all v in \({\mathbb{R}^n}\). This will show that Thas a unique inverse, as asserted in theorem 9. (Hint: Given any v in \({\mathbb{R}^n}\), we can write \({\mathop{\rm v}\nolimits} = T\left( {\mathop{\rm x}\nolimits} \right)\) for some x. Why? Compute \(S\left( {\mathop{\rm v}\nolimits} \right)\) and \(U\left( {\mathop{\rm v}\nolimits} \right)\)).

Suppose Ais an \(n \times n\) matrix with the property that the equation \(A{\mathop{\rm x}\nolimits} = 0\) has at least one solution for each b in \({\mathbb{R}^n}\). Without using Theorem 5 or 8, explain why each equation Ax = b has in fact exactly one solution.

In Exercises 5, write a system of equations that is equivalent to the given vector equation.

5. \({x_1}\left[ {\begin{array}{*{20}{c}}6\\{ - 1}\\5\end{array}} \right] + {x_2}\left[ {\begin{array}{*{20}{c}}{ - 3}\\4\\0\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}1\\{ - 7}\\{ - 5}\end{array}} \right]\)

Suppose an experiment leads to the following system of equations:

\(\begin{aligned}{c}{\bf{4}}.{\bf{5}}{x_{\bf{1}}} + {\bf{3}}.{\bf{1}}{x_{\bf{2}}} = {\bf{19}}.{\bf{249}}\\1.6{x_{\bf{1}}} + 1.1{x_{\bf{2}}} = 6.843\end{aligned}\) (3)

  1. Solve system (3), and then solve system (4), below, in which the data on the right have been rounded to two decimal places. In each case, find the exactsolution.

\(\begin{aligned}{c}{\bf{4}}.{\bf{5}}{x_{\bf{1}}} + {\bf{3}}.{\bf{1}}{x_{\bf{2}}} = {\bf{19}}.{\bf{25}}\\1.6{x_{\bf{1}}} + 1.1{x_{\bf{2}}} = 6.8{\bf{4}}\end{aligned}\) (4)

  1. The entries in (4) differ from those in (3) by less than .05%. Find the percentage error when using the solution of (4) as an approximation for the solution of (3).
  1. Use your matrix program to produce the condition number of the coefficient matrix in (3).

In Exercise 2, compute \(u + v\) and \(u - 2v\).

2. \(u = \left[ {\begin{array}{*{20}{c}}3\\2\end{array}} \right]\), \(v = \left[ {\begin{array}{*{20}{c}}2\\{ - 1}\end{array}} \right]\).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free