Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Question: In Exercises 29 and 30, describe the possible echelon forms of the standard matrix for a linear transformation\(T\). Use the notation of Example 1 in section 1.2.

30. \(T:{\mathbb{R}^4} \to {\mathbb{R}^3}\) is onto.

Short Answer

Expert verified

The possible echelon form of the standard matrix is \(\left[ {\begin{array}{*{20}{c}} \square & * & * & * \\ 0&\square & * & * \\ 0&0&\square & * \end{array}} \right]\), \(\left[ {\begin{array}{*{20}{c}} \square & * & * & * \\ 0&\square & * & * \\ 0&0&0&\square \end{array}} \right]\) ,

\(\left[ {\begin{array}{*{20}{c}} \square & * & * & * \\ 0&0&\square & * \\ 0&0&0&\square\end{array}} \right]\), and \(\left[ {\begin{array}{*{20}{c}}0&\square & * & * \\ 0&0&\square & * \\ 0&0&0&\square \end{array}} \right]\).

Step by step solution

01

The notation of example 1 for matrices in echelon form

In example 1, the following matrices are in echelon form. The leading entries \(\left( \square \right)\) may have any nonzero value; the starred entries \(\left( * \right)\) may have any value (including zero).

\(\left[ {\begin{array}{*{20}{c}} \square & * & * & * \\ 0&\square & * & * \\ 0&0&0&0 \\ 0&0&0&0 \end{array}} \right],\left[ {\begin{array}{*{20}{c}} 0&\square & * & * & * & * & * & * & * & * \\ 0&0&0&\square & * & * & * & * & * & * \\ 0&0&0&0&\square & * & * & * & * & * \\ 0&0&0&0&0&\square & * & * & * & * \\ 0&0&0&0&0&0&0&0&\square & * \end{array}} \right]\)

02

Determine the possible echelon form of the standard matrix

Theorem 12states that let\(T:{\mathbb{R}^n} \to {\mathbb{R}^m}\) be a linear transformation, and let \(A\) be the standard matrix \(T\) then \(T\)maps \({\mathbb{R}^n}\) onto \({\mathbb{R}^m}\) if and only if the columns of \(A\) span\({\mathbb{R}^m}\).

Theorem 4states that let \(A\) be a \({\mathop{\rm m}\nolimits} \times n\) matrix,then \(A\) has a pivot position in every row.

The columns of \(A\) must span \({\mathbb{R}^3}\), according to theorem 12. The matrix contains a pivot in each row, according to theorem 4.

Use leading entries \(\left( \square \right)\) and starred entries \(\left( * \right)\) to write the possible echelon form of the standard matrix.

\(\left[ {\begin{array}{*{20}{c}} \square & * & * & * \\ 0&\square & * & * \\ 0&0&\square & * \end{array}} \right]\), \(\left[ {\begin{array}{*{20}{c}} \square & * & * & * \\ 0&\square & * & * \\ 0&0&0&\square \end{array}} \right]\) ,

\(\left[ {\begin{array}{*{20}{c}} \square & * & * & * \\ 0&0&\square & * \\ 0&0&0&\square\end{array}} \right]\), and \(\left[ {\begin{array}{*{20}{c}}0&\square & * & * \\ 0&0&\square & * \\ 0&0&0&\square \end{array}} \right]\).

Therefore, \(T\) cannot be one-to-one because of the shape of \(A\).

Thus, the possible echelon form of the standard matrix is \(\left[ {\begin{array}{*{20}{c}} \square & * & * & * \\ 0&\square & * & * \\ 0&0&\square & * \end{array}} \right]\), \(\left[ {\begin{array}{*{20}{c}} \square & * & * & * \\ 0&\square & * & * \\ 0&0&0&\square \end{array}} \right]\) , \(\left[ {\begin{array}{*{20}{c}} \square & * & * & * \\ 0&0&\square & * \\ 0&0&0&\square\end{array}} \right]\), and \(\left[ {\begin{array}{*{20}{c}}0&\square & * & * \\ 0&0&\square & * \\ 0&0&0&\square \end{array}} \right]\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Find the general solutions of the systems whose augmented matrices are given in Exercises 10.

10. \(\left[ {\begin{array}{*{20}{c}}1&{ - 2}&{ - 1}&3\\3&{ - 6}&{ - 2}&2\end{array}} \right]\)

Consider a dynamical system x(t+1)=Ax(t)with two components. The accompanying sketch shows the initial state vector x0and two eigenvectors υ1andυ2of A (with eigen values λ1andλ2 respectively). For the given values of λ1andλ2, draw a rough trajectory. Consider the future and the past of the system.

λ1=1.2,λ2=1.1

Let \(A = \left[ {\begin{array}{*{20}{c}}1&0&{ - 4}\\0&3&{ - 2}\\{ - 2}&6&3\end{array}} \right]\) and \(b = \left[ {\begin{array}{*{20}{c}}4\\1\\{ - 4}\end{array}} \right]\). Denote the columns of \(A\) by \({{\mathop{\rm a}\nolimits} _1},{a_2},{a_3}\) and let \(W = {\mathop{\rm Span}\nolimits} \left\{ {{a_1},{a_2},{a_3}} \right\}\).

  1. Is \(b\) in \(\left\{ {{a_1},{a_2},{a_3}} \right\}\)? How many vectors are in \(\left\{ {{a_1},{a_2},{a_3}} \right\}\)?
  2. Is \(b\) in \(W\)? How many vectors are in W.
  3. Show that \({a_1}\) is in W.[Hint: Row operations are unnecessary.]

Let \({{\mathop{\rm v}\nolimits} _1} = \left[ {\begin{array}{*{20}{c}}1\\0\\{ - 2}\end{array}} \right],{v_2} = \left[ {\begin{array}{*{20}{c}}{ - 3}\\1\\8\end{array}} \right],\) and \({\rm{y = }}\left[ {\begin{array}{*{20}{c}}h\\{ - 5}\\{ - 3}\end{array}} \right]\). For what values(s) of \(h\) is \(y\) in the plane generated by \({{\mathop{\rm v}\nolimits} _1}\) and \({{\mathop{\rm v}\nolimits} _2}\)

In Exercise 19 and 20, choose \(h\) and \(k\) such that the system has

a. no solution

b. unique solution

c. many solutions.

Give separate answers for each part.

19. \(\begin{array}{l}{x_1} + h{x_2} = 2\\4{x_1} + 8{x_2} = k\end{array}\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free