Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Consider a dynamical systemwith two components. The accompanying sketch shows the initial state vectorx0and two eigen vectorsυ1andυ2of A (with eigen values λ1andλ2respectively). For the given values ofλ1andλ2, draw a rough trajectory. Consider the future and the past of the system.

λ1=0.9,λ2=0.9

Short Answer

Expert verified

So, the required solution isAtx0=0.9tx0.

Step by step solution

01

Define the eigenvector

Eigenvector:An eigenvector of Ais a nonzero vector vinRnsuch thatAv=λv, for some scalar.

02

Note the given data

It is given that:

λ1=0.9,λ2=0.9

Given graph is:

03

Finding the required matrix

We have:

Aυ1=0.9υ1Aυ2=0.9υ2

Forx0=αυ1+βυ2,We have:

Ax0=A(αυ1+βυ2)=αAυ1+βAυ2=0.9αυ1+0.9βυ2=0.9x0

Therefore,Atx0=0.9tx0.

Hence, the solutions isAtx0=0.9tx0..

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Exercise 23 and 24, make each statement True or False. Justify each answer.

23.

a. Another notation for the vector \(\left[ {\begin{array}{*{20}{c}}{ - 4}\\3\end{array}} \right]\) is \(\left[ {\begin{array}{*{20}{c}}{ - 4}&3\end{array}} \right]\).

b. The points in the plane corresponding to \(\left[ {\begin{array}{*{20}{c}}{ - 2}\\5\end{array}} \right]\) and \(\left[ {\begin{array}{*{20}{c}}{ - 5}\\2\end{array}} \right]\) lie on a line through the origin.

c. An example of a linear combination of vectors \({{\mathop{\rm v}\nolimits} _1}\) and \({{\mathop{\rm v}\nolimits} _2}\) is the vector \(\frac{1}{2}{{\mathop{\rm v}\nolimits} _1}\).

d. The solution set of the linear system whose augmented matrix is \(\left[ {\begin{array}{*{20}{c}}{{a_1}}&{{a_2}}&{{a_3}}&b\end{array}} \right]\) is the same as the solution set of the equation\({{\mathop{\rm x}\nolimits} _1}{a_1} + {x_2}{a_2} + {x_3}{a_3} = b\).

e. The set Span \(\left\{ {u,v} \right\}\) is always visualized as a plane through the origin.

Determine which of the matrices in Exercises 7–12areorthogonal. If orthogonal, find the inverse.

11. \(\left( {\begin{aligned}{{}}{2/3}&{2/3}&{1/3}\\0&{1/3}&{ - 2/3}\\{5/3}&{ - 4/3}&{ - 2/3}\end{aligned}} \right)\)

In Exercises 3 and 4, display the following vectors using arrows

on an \(xy\)-graph: u, v, \( - {\bf{v}}\), \( - 2{\bf{v}}\), u + v , u - v, and u - 2v. Notice that u - vis the vertex of a parallelogram whose other vertices are u, 0, and \( - {\bf{v}}\).

4. u and v as in Exercise 2

Question: Determine whether the statements that follow are true or false, and justify your answer.

19. There exits a matrix A such thatA[-12]=[357].

Find the general solutions of the systems whose augmented matrices are given as

14. \(\left[ {\begin{array}{*{20}{c}}1&2&{ - 5}&{ - 6}&0&{ - 5}\\0&1&{ - 6}&{ - 3}&0&2\\0&0&0&0&1&0\\0&0&0&0&0&0\end{array}} \right]\).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free