Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Rewrite the (numerical) matrix equation below in symbolic form as a vector equation, using symbols \({{\bf{v}}_1},{{\bf{v}}_2},{{\bf{v}}_3},...\) for the vectors and \({c_1},{c_2},...\) for scalars. Define what each symbol represents, using the data given in the matrix equation.

\(\left( {\begin{array}{*{20}{c}}{ - 3}&5&{ - 4}&9&7\\5&8&1&{ - 2}&{ - 4}\end{array}} \right)\left( {\begin{array}{*{20}{c}}{ - 3}\\2\\4\\{ - 1}\\2\end{array}} \right) = \left( {\begin{array}{*{20}{c}}8\\{ - 1}\end{array}} \right)\)

Short Answer

Expert verified

The vectors are \({{\bf{v}}_1} = \left( {\begin{array}{*{20}{c}}{ - 3}\\5\end{array}} \right)\), \({{\bf{v}}_2} = \left( {\begin{array}{*{20}{c}}5\\8\end{array}} \right)\), \({{\bf{v}}_3} = \left( {\begin{array}{*{20}{c}}{ - 4}\\1\end{array}} \right)\), \({{\bf{v}}_4} = \left( {\begin{array}{*{20}{c}}9\\{ - 2}\end{array}} \right)\), \({{\bf{v}}_5} = \left( {\begin{array}{*{20}{c}}7\\{ - 4}\end{array}} \right)\), \({{\bf{v}}_6} = \left( {\begin{array}{*{20}{c}}8\\{ - 1}\end{array}} \right)\), and the scalars are \({c_1} = - 3\), \({c_2} = 2\), \({c_3} = 4\), \({c_4} = - 1\), and \({c_5} = 2\).

Step by step solution

01

Writing the definition of \(V{\bf{c}}\)

Consider the column of matrix \(V\) is represented as \(\left( {\begin{array}{*{20}{c}}{{{\bf{v}}_1}}&{{{\bf{v}}_2}}&{ \cdot \cdot \cdot }&{{{\bf{v}}_n}}\end{array}} \right)\), and vector c is represented as \(\left( {\begin{array}{*{20}{c}}{{c_1}}\\ \vdots \\{{c_n}}\end{array}} \right)\).

According to the definition, the weights in a linear combination of matrix V columns are represented by the entries in vector c.

The matrix equation as a vector equation can be written as shown below:

\(\begin{array}{c}V{\bf{c}} = \left( {\begin{array}{*{20}{c}}{{{\bf{v}}_1}}&{{{\bf{v}}_2}}&{ \cdot \cdot \cdot }&{{{\bf{v}}_n}}\end{array}} \right)\left( {\begin{array}{*{20}{c}}{{c_1}}\\ \vdots \\{{c_n}}\end{array}} \right)\\V{\bf{c}} = {c_1}{{\bf{v}}_1} + {c_2}{{\bf{v}}_2} + \cdots + {c_n}{{\bf{v}}_n}\end{array}\)

The number of columns in matrix \(V\) should be equal to the number of entries in vector c so that \(V{\bf{c}}\) can be defined.

02

Writing matrix V and vector c

Consider the equation \(\left( {\begin{array}{*{20}{c}}{ - 3}&5&{ - 4}&9&7\\5&8&1&{ - 2}&{ - 4}\end{array}} \right)\left( {\begin{array}{*{20}{c}}{ - 3}\\2\\4\\{ - 1}\\2\end{array}} \right) = \left( {\begin{array}{*{20}{c}}8\\{ - 1}\end{array}} \right)\).

Here, \(V = \left( {\begin{array}{*{20}{c}}{ - 3}&5&{ - 4}&9&7\\5&8&1&{ - 2}&{ - 4}\end{array}} \right)\), \({\bf{c}} = \left( {\begin{array}{*{20}{c}}{ - 3}\\2\\4\\{ - 1}\\2\end{array}} \right)\), and \(V{\bf{c}} = \left( {\begin{array}{*{20}{c}}8\\{ - 1}\end{array}} \right)\).

03

Writing the columns of matrix V 

Compare matrix \(V = \left( {\begin{array}{*{20}{c}}{ - 3}&5&{ - 4}&9&7\\5&8&1&{ - 2}&{ - 4}\end{array}} \right)\) with \(V = \left( {\begin{array}{*{20}{c}}{{{\bf{v}}_1}}&{{{\bf{v}}_2}}&{ \cdot \cdot \cdot }&{{{\bf{v}}_n}}\end{array}} \right)\).

So, \({{\bf{v}}_1} = \left( {\begin{array}{*{20}{c}}{ - 3}\\5\end{array}} \right)\), \({{\bf{v}}_2} = \left( {\begin{array}{*{20}{c}}5\\8\end{array}} \right)\), \({{\bf{v}}_3} = \left( {\begin{array}{*{20}{c}}{ - 4}\\1\end{array}} \right)\), \({{\bf{v}}_4} = \left( {\begin{array}{*{20}{c}}9\\{ - 2}\end{array}} \right)\), \({{\bf{v}}_5} = \left( {\begin{array}{*{20}{c}}7\\{ - 4}\end{array}} \right)\).

Also, \(V{\bf{c}} = \left( {\begin{array}{*{20}{c}}8\\{ - 1}\end{array}} \right)\), or \({{\bf{v}}_6} = \left( {\begin{array}{*{20}{c}}8\\{ - 1}\end{array}} \right)\).

04

Writing the entries for vector c

Compare vector \({\bf{c}} = \left( {\begin{array}{*{20}{c}}{ - 3}\\2\\4\\{ - 1}\\2\end{array}} \right)\) with \({\bf{c}} = \left( {\begin{array}{*{20}{c}}{{c_1}}\\ \vdots \\{{c_n}}\end{array}} \right)\).

So, \({c_1} = - 3\), \({c_2} = 2\), \({c_3} = 4\), \({c_4} = - 1\), and \({c_5} = 2\).

Thus, the vectors are \({{\bf{v}}_1} = \left( {\begin{array}{*{20}{c}}{ - 3}\\5\end{array}} \right)\), \({{\bf{v}}_2} = \left( {\begin{array}{*{20}{c}}5\\8\end{array}} \right)\), \({{\bf{v}}_3} = \left( {\begin{array}{*{20}{c}}{ - 4}\\1\end{array}} \right)\), \({{\bf{v}}_4} = \left( {\begin{array}{*{20}{c}}9\\{ - 2}\end{array}} \right)\), \({{\bf{v}}_5} = \left( {\begin{array}{*{20}{c}}7\\{ - 4}\end{array}} \right)\), \({{\bf{v}}_6} = \left( {\begin{array}{*{20}{c}}8\\{ - 1}\end{array}} \right)\), and the scalars are \({c_1} = - 3\), \({c_2} = 2\), \({c_3} = 4\), \({c_4} = - 1\), and \({c_5} = 2\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Exercises 33 and 34, Tis a linear transformation from \({\mathbb{R}^2}\) into \({\mathbb{R}^2}\). Show that T is invertible and find a formula for \({T^{ - 1}}\).

33. \(T\left( {{x_1},{x_2}} \right) = \left( { - 5{x_1} + 9{x_2},4{x_1} - 7{x_2}} \right)\)

Find the general solutions of the systems whose augmented matrices are given as

14. \(\left[ {\begin{array}{*{20}{c}}1&2&{ - 5}&{ - 6}&0&{ - 5}\\0&1&{ - 6}&{ - 3}&0&2\\0&0&0&0&1&0\\0&0&0&0&0&0\end{array}} \right]\).

The solutions \(\left( {x,y,z} \right)\) of a single linear equation \(ax + by + cz = d\)

form a plane in \({\mathbb{R}^3}\) when a, b, and c are not all zero. Construct sets of three linear equations whose graphs (a) intersect in a single line, (b) intersect in a single point, and (c) have no points in common. Typical graphs are illustrated in the figure.

Three planes intersecting in a line.

(a)

Three planes intersecting in a point.

(b)

Three planes with no intersection.

(c)

Three planes with no intersection.

(cโ€™)

Write the reduced echelon form of a \(3 \times 3\) matrix A such that the first two columns of Aare pivot columns and

\(A = \left( {\begin{aligned}{*{20}{c}}3\\{ - 2}\\1\end{aligned}} \right) = \left( {\begin{aligned}{*{20}{c}}0\\0\\0\end{aligned}} \right)\).

In Exercises 11 and 12, determine if \({\rm{b}}\) is a linear combination of \({{\mathop{\rm a}\nolimits} _1},{a_2}\) and \({a_3}\).

11.\({a_1} = \left[ {\begin{array}{*{20}{c}}1\\{ - 2}\\0\end{array}} \right],{a_2} = \left[ {\begin{array}{*{20}{c}}0\\1\\2\end{array}} \right],{a_3} = \left[ {\begin{array}{*{20}{c}}5\\{ - 6}\\8\end{array}} \right],{\mathop{\rm b}\nolimits} = \left[ {\begin{array}{*{20}{c}}2\\{ - 1}\\6\end{array}} \right]\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free