Chapter 1: Q27Q (page 1)
In Exercises 25-28, determine if the specified linear transformation is (a) one-to-one and (b) onto. Justify each answer.
27. The transformation in Exercise 19.
Short Answer
The specified linear transformation is onto.
Chapter 1: Q27Q (page 1)
In Exercises 25-28, determine if the specified linear transformation is (a) one-to-one and (b) onto. Justify each answer.
27. The transformation in Exercise 19.
The specified linear transformation is onto.
All the tools & learning materials you need for study success - in one app.
Get started for freeIn Exercise 23 and 24, make each statement True or False. Justify each answer.
23.
a. Another notation for the vector \(\left[ {\begin{array}{*{20}{c}}{ - 4}\\3\end{array}} \right]\) is \(\left[ {\begin{array}{*{20}{c}}{ - 4}&3\end{array}} \right]\).
b. The points in the plane corresponding to \(\left[ {\begin{array}{*{20}{c}}{ - 2}\\5\end{array}} \right]\) and \(\left[ {\begin{array}{*{20}{c}}{ - 5}\\2\end{array}} \right]\) lie on a line through the origin.
c. An example of a linear combination of vectors \({{\mathop{\rm v}\nolimits} _1}\) and \({{\mathop{\rm v}\nolimits} _2}\) is the vector \(\frac{1}{2}{{\mathop{\rm v}\nolimits} _1}\).
d. The solution set of the linear system whose augmented matrix is \(\left[ {\begin{array}{*{20}{c}}{{a_1}}&{{a_2}}&{{a_3}}&b\end{array}} \right]\) is the same as the solution set of the equation\({{\mathop{\rm x}\nolimits} _1}{a_1} + {x_2}{a_2} + {x_3}{a_3} = b\).
e. The set Span \(\left\{ {u,v} \right\}\) is always visualized as a plane through the origin.
Let T be a linear transformation that maps \({\mathbb{R}^n}\) onto \({\mathbb{R}^n}\). Is \({T^{ - 1}}\) also one-to-one?
Let \(T:{\mathbb{R}^n} \to {\mathbb{R}^m}\) be a linear transformation, and suppose \(T\left( u \right) = {\mathop{\rm v}\nolimits} \). Show that \(T\left( { - u} \right) = - {\mathop{\rm v}\nolimits} \).
In Exercises 13 and 14, determine if \({\mathop{\rm b}\nolimits} \) is a linear combination of the vectors formed from the columns of the matrix \(A\).
14. \(A = \left[ {\begin{array}{*{20}{c}}1&{ - 2}&{ - 6}\\0&3&7\\1&{ - 2}&5\end{array}} \right],{\mathop{\rm b}\nolimits} = \left[ {\begin{array}{*{20}{c}}{11}\\{ - 5}\\9\end{array}} \right]\)
Solve the systems in Exercises 11โ14.
12.\(\begin{aligned}{c}{x_1} - 3{x_2} + 4{x_3} = - 4\\3{x_1} - 7{x_2} + 7{x_3} = - 8\\ - 4{x_1} + 6{x_2} - {x_3} = 7\end{aligned}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.