Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Suppose the coefficient matrix of a linear system of three equations in three variables has a pivot in each column. Explain why the system has a unique solution.

Short Answer

Expert verified

No free variable lies in the system.

Step by step solution

01

Describe the given data

The coefficient matrix of a linear system of three equations in three variables has a pivot in each column.

02

Determine the existence of a solution

We know that a pivot is a nonzero real number. This implies that its echelon form of the augmented matrix has no row of the form

\(\left( {\begin{array}{*{20}{c}}0&0&0&b\end{array}} \right)\).

Here, \(b\) is any nonzero real number.

This ensures that there exists a solution.

03

Determine the uniqueness of a solution

Note that each row consists of a pivot. So, its row echelon form of the augmented matrix looks like an upper triangular matrix with nonzero diagonal entries. Therefore, the rank is 3. Also, it indicates that there is no free variable. Hence, there is no need for parameters.

04

Conclusion

Thus, the system has a unique solution.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Exercises 23 and 24, key statements from this section are either quoted directly, restated slightly (but still true), or altered in some way that makes them false in some cases. Mark each statement True or False, and justify your answer.(If true, give the approximate location where a similar statement appears, or refer to a definition or theorem. If false, give the location of a statement that has been quoted or used incorrectly, or cite an example that shows the statement is not true in all cases.) Similar true/false questions will appear in many sections of the text.

24.

a. Elementary row operations on an augmented matrix never change the solution set of the associated linear system.

b. Two matrices are row equivalent if they have the same number of rows.

c. An inconsistent system has more than one solution.

d. Two linear systems are equivalent if they have the same solution set.

If Ais an \(n \times n\) matrix and the transformation \({\bf{x}}| \to A{\bf{x}}\) is one-to-one, what else can you say about this transformation? Justify your answer.

Use the accompanying figure to write each vector listed in Exercises 7 and 8 as a linear combination of u and v. Is every vector in \({\mathbb{R}^2}\) a linear combination of u and v?

7.Vectors a, b, c, and d

Suppose Ais an \(n \times n\) matrix with the property that the equation \(Ax = 0\)has only the trivial solution. Without using the Invertible Matrix Theorem, explain directly why the equation \(Ax = b\) must have a solution for each b in \({\mathbb{R}^n}\).

In (a) and (b), suppose the vectors are linearly independent. What can you say about the numbers \(a,....,f\) ? Justify your answers. (Hint: Use a theorem for (b).)

  1. \(\left( {\begin{aligned}{*{20}{c}}a\\0\\0\end{aligned}} \right),\left( {\begin{aligned}{*{20}{c}}b\\c\\d\end{aligned}} \right),\left( {\begin{aligned}{*{20}{c}}d\\e\\f\end{aligned}} \right)\)
  2. \(\left( {\begin{aligned}{*{20}{c}}a\\1\\0\\0\end{aligned}} \right),\left( {\begin{aligned}{*{20}{c}}b\\c\\1\\0\end{aligned}} \right),\left( {\begin{aligned}{*{20}{c}}d\\e\\f\\1\end{aligned}} \right)\)
See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free