Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Question: Let \({\bf{u}} = \left( {\begin{array}{*{20}{c}}7\\2\\5\end{array}} \right)\), \({\bf{v}} = \left( {\begin{array}{*{20}{c}}3\\1\\3\end{array}} \right)\), and \({\bf{w}} = \left( {\begin{array}{*{20}{c}}6\\1\\0\end{array}} \right)\). It can be shown that \(3{\bf{u}} - 5{\bf{v}} - {\bf{w}} = 0\). Use this fact (and no row operations) to find \({x_1}\) and \({x_2}\) that satisfy the equation\(\left( {\begin{array}{*{20}{c}}7&3\\2&1\\5&3\end{array}} \right)\left( {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\end{array}} \right) = \left( {\begin{array}{*{20}{c}}6\\1\\0\end{array}} \right)\).

Short Answer

Expert verified

The required valuesare \({x_1} = 3\) and \({x_2} = - 5\).

Step by step solution

01

Describing the relation \(3{\bf{u}} - 5{\bf{v}} - {\bf{w}} = 0\)

Substitute the vectors \({\bf{u}} = \left( {\begin{aligned}{{}}7\\2\\5\end{aligned}} \right)\), \({\bf{v}} = \left( {\begin{aligned}{{}}3\\1\\3\end{aligned}} \right)\), and \({\bf{w}} = \left( {\begin{aligned}{{}}6\\1\\0\end{aligned}} \right)\) in the relation \(3{\bf{u}} - 5{\bf{v}} - {\bf{w}} = 0\).

\(\begin{aligned}{}3{\bf{u}} - 5{\bf{v}} - {\bf{w}} &= 3\left( {\begin{aligned}{{}}7\\2\\5\end{aligned}} \right) - 5\left( {\begin{aligned}{{}}3\\1\\3\end{aligned}} \right) - \left( {\begin{aligned}{{}}6\\1\\0\end{aligned}} \right)\\ &= \left( {\begin{aligned}{{}}{21}\\6\\{15}\end{aligned}} \right) - \left( {\begin{aligned}{{}}{15}\\5\\{15}\end{aligned}} \right) - \left( {\begin{aligned}{{}}6\\1\\0\end{aligned}} \right)\\ &= \left( {\begin{aligned}{{}}{21 - 15 - 6}\\{6 - 5 - 1}\\{15 - 15 - 0}\end{aligned}} \right)\\ &= \left( {\begin{aligned}{{}}0\\0\\0\end{aligned}} \right)\end{aligned}\)

Thus, \(3{\bf{u}} - 5{\bf{v}} - {\bf{w}} = \left( {\begin{array}{*{20}{c}}0\\0\\0\end{array}} \right)\).

02

Simplifying the above equation

Add vector w on both sides of the equation \(3{\bf{u}} - 5{\bf{v}} - {\bf{w}} = \left( {\begin{array}{*{20}{c}}0\\0\\0\end{array}} \right)\).

\(\begin{array}{c}3{\bf{u}} - 5{\bf{v}} - {\bf{w}} + {\bf{w}} = \left( {\begin{array}{*{20}{c}}0\\0\\0\end{array}} \right) + {\bf{w}}\\3{\bf{u}} - 5{\bf{v}} = \left( {\begin{array}{*{20}{c}}0\\0\\0\end{array}} \right) + {\bf{w}}\end{array}\)

Thus, \(3{\bf{u}} - 5{\bf{v}} = \left( {\begin{array}{*{20}{c}}0\\0\\0\end{array}} \right) + {\bf{w}}\).

03

Step 3:Writing the above equation in vector form

The left part of the equation \(3{\bf{u}} - 5{\bf{v}} = \left( {\begin{array}{*{20}{c}}0\\0\\0\end{array}} \right) + {\bf{w}}\) is \(3{\bf{u}} - 5{\bf{v}}\).

Using the matrix-vector product,\(3{\bf{u}} - 5{\bf{v}}\) can be written as shown below:

\(3{\bf{u}} - 5{\bf{v}} = \left( {\begin{array}{*{20}{c}}{\bf{u}}&{\bf{v}}\end{array}} \right)\left( {\begin{array}{*{20}{c}}3\\{ - 5}\end{array}} \right)\)

The equation becomes

\(\begin{array}{c}\left( {\begin{array}{*{20}{c}}{\bf{u}}&{\bf{v}}\end{array}} \right)\left( {\begin{array}{*{20}{c}}3\\{ - 5}\end{array}} \right) = \left( {\begin{array}{*{20}{c}}0\\0\\0\end{array}} \right) + {\bf{w}}\\\left( {\begin{array}{*{20}{c}}{\bf{u}}&{\bf{v}}\end{array}} \right)\left( {\begin{array}{*{20}{c}}3\\{ - 5}\end{array}} \right) = {\bf{w}}.\end{array}\)

Thus, \(\left( {\begin{array}{*{20}{c}}{\bf{u}}&{\bf{v}}\end{array}} \right)\left( {\begin{array}{*{20}{c}}3\\{ - 5}\end{array}} \right) = {\bf{w}}\).

04

Obtaining the values of unknowns

Compare the equation \(\left( {\begin{array}{*{20}{c}}{\bf{u}}&{\bf{v}}\end{array}} \right)\left( {\begin{array}{*{20}{c}}3\\{ - 5}\end{array}} \right) = {\bf{w}}\) with the equation \(\left( {\begin{array}{*{20}{c}}7&3\\2&1\\5&3\end{array}} \right)\left( {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\end{array}} \right) = \left( {\begin{array}{*{20}{c}}6\\1\\0\end{array}} \right)\)to get\({\bf{u}} = \left( {\begin{array}{*{20}{c}}7\\2\\5\end{array}} \right)\), \({\bf{v}} = \left( {\begin{array}{*{20}{c}}3\\1\\3\end{array}} \right)\),and \({\bf{w}} = \left( {\begin{array}{*{20}{c}}6\\1\\0\end{array}} \right)\).

Also, \(\left( {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\end{array}} \right) = \left( {\begin{array}{*{20}{c}}3\\{ - 5}\end{array}} \right)\).

Thus, the required values are\({x_1} = 3\) and \({x_2} = - 5\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Consider the problem of determining whether the following system of equations is consistent for all \({b_1},{b_2},{b_3}\):

\(\begin{aligned}{c}{\bf{2}}{x_1} - {\bf{4}}{x_2} - {\bf{2}}{x_3} = {b_1}\\ - {\bf{5}}{x_1} + {x_2} + {x_3} = {b_2}\\{\bf{7}}{x_1} - {\bf{5}}{x_2} - {\bf{3}}{x_3} = {b_3}\end{aligned}\)

  1. Define appropriate vectors, and restate the problem in terms of Span \(\left\{ {{{\bf{v}}_1},{{\bf{v}}_2},{{\bf{v}}_3}} \right\}\). Then solve that problem.
  1. Define an appropriate matrix, and restate the problem using the phrase โ€œcolumns of A.โ€
  1. Define an appropriate linear transformation T using the matrix in (b), and restate the problem in terms of T.

Let \({{\mathop{\rm v}\nolimits} _1} = \left[ {\begin{array}{*{20}{c}}1\\0\\{ - 2}\end{array}} \right],{v_2} = \left[ {\begin{array}{*{20}{c}}{ - 3}\\1\\8\end{array}} \right],\) and \({\rm{y = }}\left[ {\begin{array}{*{20}{c}}h\\{ - 5}\\{ - 3}\end{array}} \right]\). For what values(s) of \(h\) is \(y\) in the plane generated by \({{\mathop{\rm v}\nolimits} _1}\) and \({{\mathop{\rm v}\nolimits} _2}\)

Suppose Ais an \(n \times n\) matrix with the property that the equation \(A{\mathop{\rm x}\nolimits} = 0\) has at least one solution for each b in \({\mathbb{R}^n}\). Without using Theorem 5 or 8, explain why each equation Ax = b has in fact exactly one solution.

Find the general solutions of the systems whose augmented matrices are given in Exercises 10.

10. \(\left[ {\begin{array}{*{20}{c}}1&{ - 2}&{ - 1}&3\\3&{ - 6}&{ - 2}&2\end{array}} \right]\)

Find the general solutions of the systems whose augmented matrices are given as

14. \(\left[ {\begin{array}{*{20}{c}}1&2&{ - 5}&{ - 6}&0&{ - 5}\\0&1&{ - 6}&{ - 3}&0&2\\0&0&0&0&1&0\\0&0&0&0&0&0\end{array}} \right]\).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free