Chapter 1: Q25E (page 1)
Prove the second part of theorem 6: Let be any solution of \(A{\mathop{\rm x}\nolimits} = b\) , and define \({{\mathop{\rm v}\nolimits} _h} = {\mathop{\rm w}\nolimits} - p\) . Show that \({{\mathop{\rm v}\nolimits} _h}\) is a solution of \(A{\mathop{\rm x}\nolimits} = 0\) . This shows that every solution of \(A{\mathop{\rm x}\nolimits} = b\) has a form \(w = {\mathop{\rm p}\nolimits} + {{\mathop{\rm v}\nolimits} _h}\) , with \(p\) a particular solution of \(A{\mathop{\rm x}\nolimits} = b\) and \({{\mathop{\rm v}\nolimits} _h}\) a solution of \(A{\mathop{\rm x}\nolimits} = 0\).
Short Answer
Every solution of \(Ax = {\mathop{\rm b}\nolimits} \) is of the form \(w = {\mathop{\rm p}\nolimits} + {v_h}\).