Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Find an equation involving \(g,\,h,\)and \(k\) that makes this augmented matrix correspond to a consistent system:

\(\left[ {\begin{array}{*{20}{c}}1&{ - 4}&7&g\\0&3&{ - 5}&h\\{ - 2}&5&{ - 9}&k\end{array}} \right]\)

Short Answer

Expert verified

The required equation is \(2g + h + k = 0\).

Step by step solution

01

Rewrite the augmented matrix

The givenaugmented matrix of a consistent system is as follows:

\(\left[ {\begin{array}{*{20}{c}}1&{ - 4}&7&g\\0&3&{ - 5}&h\\{ - 2}&5&{ - 9}&k\end{array}} \right]\)

02

Perform the elementary row operation

To eliminate the first term of the third row, perform an elementaryrow operationon the matrix \(\left[ {\begin{array}{*{20}{c}}1&{ - 4}&7&g\\0&3&{ - 5}&h\\{ - 2}&5&{ - 9}&k\end{array}} \right]\), as shown below.

Add two times of row one to row three; i.e., \({R_3} \to {R_3} + 2{R_1}\).

\(\left[ {\begin{array}{*{20}{c}}1&{ - 4}&7&g\\0&3&{ - 5}&h\\{ - 2 + 2\left( 1 \right)}&{5 + 2\left( { - 4} \right)}&{ - 9 + 2\left( 7 \right)}&{k + 2\left( g \right)}\end{array}} \right]\)

After the row operation, the matrix becomes:

\(\left[ {\begin{array}{*{20}{c}}1&{ - 4}&7&g\\0&3&{ - 5}&h\\0&{ - 3}&5&{k + 2g}\end{array}} \right]\)

03

Apply the row operation

To eliminate the second term of the third row, add the second row to the third row; i.e., \({R_3} \to {R_3} - 3{R_1}\).

\(\left[ {\begin{array}{*{20}{c}}1&{ - 4}&7&g\\0&3&{ - 5}&h\\0&0&0&{k + 2g + h}\end{array}} \right]\)

04

Condition of a consistent system

For the system to beconsistent, it should have uniqueorinfinitely many solutions.

Let c denote the number \(k + 2g + h\). Then the third equation, as represented by the augmented matrix above, is \(0 = b\). This equation is possible if and only if b is equal to zero. It means the original system has a solution if and only if \(k + 2g + h = 0\).

Hence, the required equation is \(2g + h + k = 0\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Let \(A = \left[ {\begin{array}{*{20}{c}}1&0&{ - 4}\\0&3&{ - 2}\\{ - 2}&6&3\end{array}} \right]\) and \(b = \left[ {\begin{array}{*{20}{c}}4\\1\\{ - 4}\end{array}} \right]\). Denote the columns of \(A\) by \({{\mathop{\rm a}\nolimits} _1},{a_2},{a_3}\) and let \(W = {\mathop{\rm Span}\nolimits} \left\{ {{a_1},{a_2},{a_3}} \right\}\).

  1. Is \(b\) in \(\left\{ {{a_1},{a_2},{a_3}} \right\}\)? How many vectors are in \(\left\{ {{a_1},{a_2},{a_3}} \right\}\)?
  2. Is \(b\) in \(W\)? How many vectors are in W.
  3. Show that \({a_1}\) is in W.[Hint: Row operations are unnecessary.]

In Exercise 23 and 24, make each statement True or False. Justify each answer.

24.

a. Any list of five real numbers is a vector in \({\mathbb{R}^5}\).

b. The vector \({\mathop{\rm u}\nolimits} \) results when a vector \({\mathop{\rm u}\nolimits} - v\) is added to the vector \({\mathop{\rm v}\nolimits} \).

c. The weights \({{\mathop{\rm c}\nolimits} _1},...,{c_p}\) in a linear combination \({c_1}{v_1} + \cdot \cdot \cdot + {c_p}{v_p}\) cannot all be zero.

d. When are \({\mathop{\rm u}\nolimits} \) nonzero vectors, Span \(\left\{ {u,v} \right\}\) contains the line through \({\mathop{\rm u}\nolimits} \) and the origin.

e. Asking whether the linear system corresponding to an augmented matrix \(\left[ {\begin{array}{*{20}{c}}{{{\rm{a}}_{\rm{1}}}}&{{{\rm{a}}_{\rm{2}}}}&{{{\rm{a}}_{\rm{3}}}}&{\rm{b}}\end{array}} \right]\) has a solution amounts to asking whether \({\mathop{\rm b}\nolimits} \) is in Span\(\left\{ {{a_1},{a_2},{a_3}} \right\}\).

In Exercises 23 and 24, key statements from this section are either quoted directly, restated slightly (but still true), or altered in some way that makes them false in some cases. Mark each statement True or False, and justify your answer. (If true, give the approximate location where a similar statement appears, or refer to a de๏ฌnition or theorem. If false, give the location of a statement that has been quoted or used incorrectly, or cite an example that shows the statement is not true in all cases.) Similar true/false questions will appear in many sections of the text.

23.

a. Every elementary row operation is reversible.

b. A \(5 \times 6\)matrix has six rows.

c. The solution set of a linear system involving variables \({x_1},\,{x_2},\,{x_3},........,{x_n}\)is a list of numbers \(\left( {{s_1},\, {s_2},\,{s_3},........,{s_n}} \right)\) that makes each equation in the system a true statement when the values \ ({s_1},\, {s_2},\, {s_3},........,{s_n}\) are substituted for \({x_1},\,{x_2},\,{x_3},........,{x_n}\), respectively.

d. Two fundamental questions about a linear system involve existence and uniqueness.

Suppose the system below is consistent for all possible values of \(f\) and \(g\). What can you say about the coefficients \(c\) and \(d\)? Justify your answer.

27. \(\begin{array}{l}{x_1} + 3{x_2} = f\\c{x_1} + d{x_2} = g\end{array}\)

In Exercises 33 and 34, Tis a linear transformation from \({\mathbb{R}^2}\) into \({\mathbb{R}^2}\). Show that T is invertible and find a formula for \({T^{ - 1}}\).

33. \(T\left( {{x_1},{x_2}} \right) = \left( { - 5{x_1} + 9{x_2},4{x_1} - 7{x_2}} \right)\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free