Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In Exercise 23 and 24, make each statement True or False. Justify each answer.

23.

a. Another notation for the vector \(\left[ {\begin{array}{*{20}{c}}{ - 4}\\3\end{array}} \right]\) is \(\left[ {\begin{array}{*{20}{c}}{ - 4}&3\end{array}} \right]\).

b. The points in the plane corresponding to \(\left[ {\begin{array}{*{20}{c}}{ - 2}\\5\end{array}} \right]\) and \(\left[ {\begin{array}{*{20}{c}}{ - 5}\\2\end{array}} \right]\) lie on a line through the origin.

c. An example of a linear combination of vectors \({{\mathop{\rm v}\nolimits} _1}\) and \({{\mathop{\rm v}\nolimits} _2}\) is the vector \(\frac{1}{2}{{\mathop{\rm v}\nolimits} _1}\).

d. The solution set of the linear system whose augmented matrix is \(\left[ {\begin{array}{*{20}{c}}{{a_1}}&{{a_2}}&{{a_3}}&b\end{array}} \right]\) is the same as the solution set of the equation\({{\mathop{\rm x}\nolimits} _1}{a_1} + {x_2}{a_2} + {x_3}{a_3} = b\).

e. The set Span \(\left\{ {u,v} \right\}\) is always visualized as a plane through the origin.

Short Answer

Expert verified
  1. False
  2. False
  3. True
  4. True
  5. False

Step by step solution

01

Identify whether the statement is true or false

a.

In the alternative notation, column vectors are written as (–4, 3) using parentheses and commas.

Thus, the given statement (a) is false.

02

Identify whether the statement is true or false

b.

If the vector’s corresponding points in the plane were on the same line through the origin, the vectors would have been scalar multiples of each other. The points in the plane corresponding to \(\left[ {\begin{array}{*{20}{c}}{ - 2}\\5\end{array}} \right]\) and \(\left[ {\begin{array}{*{20}{c}}{ - 5}\\2\end{array}} \right]\) are not scalar multiples of each other.

Thus, the given statement (b) is false.

03

Identify whether the statement is true or false

c.

Vector\({\mathop{\rm y}\nolimits} \)defined by\(y = {c_1}{v_1} + .... + {c_p}{v_p}\)is called alinear combination of\({{\mathop{\rm v}\nolimits} _1},{v_2},...,{v_p}\)with weights\({c_1},{c_2},...,{c_p}\).

Vector \(\frac{1}{2}{v_1} = \frac{1}{2}{v_1} + 0{v_2}\) is a linear combination of vectors \({v_1}\) and \({v_2}\).

Thus, the given statement (c) is true.

04

Identify whether the statement is true or false

d.

It is known that a vector equation \({{\mathop{\rm x}\nolimits} _1}{a_1} + {x_2}{a_2} + ... + {x_n}{a_n} = b\) has the same solution set as the linear system whose augmented matrix is \(\left[ {\begin{array}{*{20}{c}}{{a_1}}&{{a_2}}&{...}&{{a_n}}&b\end{array}} \right]\).

Thus, the given statement (d) is true.

05

Identify whether the statement is true or false

e.

The statement is frequently correct; however, span\(\left\{ {u,v} \right\}\)is not a plane when\(v\)is a multiple of\({\mathop{\rm u}\nolimits} \)or when\({\mathop{\rm u}\nolimits} \)is the zero vector.

Thus, the given statement (e) is false.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Exercises 33 and 34, Tis a linear transformation from \({\mathbb{R}^2}\) into \({\mathbb{R}^2}\). Show that T is invertible and find a formula for \({T^{ - 1}}\).

33. \(T\left( {{x_1},{x_2}} \right) = \left( { - 5{x_1} + 9{x_2},4{x_1} - 7{x_2}} \right)\)

Question: If A is a non-zero matrix of the form,[a-bba] then the rank of A must be 2.

Use the accompanying figure to write each vector listed in Exercises 7 and 8 as a linear combination of u and v. Is every vector in \({\mathbb{R}^2}\) a linear combination of u and v?

8.Vectors w, x, y, and z

An important concern in the study of heat transfer is to determine the steady-state temperature distribution of a thin plate when the temperature around the boundary is known. Assume the plate shown in the figure represents a cross section of a metal beam, with negligible heat flow in the direction perpendicular to the plate. Let \({T_1},...,{T_4}\) denote the temperatures at the four interior nodes of the mesh in the figure. The temperature at a node is approximately equal to the average of the four nearest nodes—to the left, above, to the right, and below. For instance,

\({T_1} = \left( {10 + 20 + {T_2} + {T_4}} \right)/4\), or \(4{T_1} - {T_2} - {T_4} = 30\)

33. Write a system of four equations whose solution gives estimates

for the temperatures \({T_1},...,{T_4}\).

Let \({{\mathop{\rm v}\nolimits} _1} = \left[ {\begin{array}{*{20}{c}}1\\0\\{ - 2}\end{array}} \right],{v_2} = \left[ {\begin{array}{*{20}{c}}{ - 3}\\1\\8\end{array}} \right],\) and \({\rm{y = }}\left[ {\begin{array}{*{20}{c}}h\\{ - 5}\\{ - 3}\end{array}} \right]\). For what values(s) of \(h\) is \(y\) in the plane generated by \({{\mathop{\rm v}\nolimits} _1}\) and \({{\mathop{\rm v}\nolimits} _2}\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free