Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Construct a \(3 \times 3\) matrix\(A\), with nonzero entries, and a vector \(b\) in \({\mathbb{R}^3}\) such that \(b\) is not in the set spanned by the columns of\(A\).

Short Answer

Expert verified

\(A = \left[ {\begin{array}{*{20}{c}}1&1&1\\{ - 1}&1&1\\{ - 1}&{ - 1}&{ - 1}\end{array}} \right]\) and \(b = \left[ {\begin{array}{*{20}{c}}1\\2\\3\end{array}} \right]\)

Step by step solution

01

Idea to construct the matrices

The idea is to consider a matrix \(A\) with nonzero entries such that the system is inconsistent.

Take \(A = \left[ {\begin{array}{*{20}{c}}1&1&1\\{ - 1}&1&1\\{ - 1}&{ - 1}&{ - 1}\end{array}} \right]\) and \(b = \left[ {\begin{array}{*{20}{c}}1\\2\\3\end{array}} \right]\).

02

Determine the objective to be shown

To prove \(b\)is not in the set spanned by the columns of\(A\), show \(x\left[ {\begin{array}{*{20}{c}}1\\{ - 1}\\{ - 1}\end{array}} \right] + y\left[ {\begin{array}{*{20}{c}}1\\1\\{ - 1}\end{array}} \right] + z\left[ {\begin{array}{*{20}{c}}1\\1\\{ - 1}\end{array}} \right] = b\) has no solution.

03

Convert the linear combination to the system

This linear combination can be written as:

\(\begin{aligned}{c}\left[ {\begin{array}{*{20}{c}}x\\{ - x}\\{ - x}\end{array}} \right] + \left[ {\begin{array}{*{20}{c}}y\\y\\{ - y}\end{array}} \right] + \left[ {\begin{array}{*{20}{c}}z\\z\\{ - z}\end{array}} \right] &= \left[ {\begin{array}{*{20}{c}}1\\2\\3\end{array}} \right]\\\left[ {\begin{array}{*{20}{c}}{x + y + z}\\{ - x + y + z}\\{ - x - y - z}\end{array}} \right] &= \left[ {\begin{array}{*{20}{c}}1\\2\\3\end{array}} \right]\end{aligned}\)

This implies that the system is:

\(\begin{array}{c}x + y + z = 1\\ - x + y + z = 2\\ - x - y - z = 3\end{array}\)

04

Determine the inconsistency of the system

The row echelon form of the augmented matrix of this system is given as follows:

Apply row operations \({R_2} \to {R_2} + {R_1}\) and \({R_3} \to {R_3} + {R_1}\).

\(\left[ {\begin{array}{*{20}{c}}1&1&1&1\\{ - 1}&1&1&2\\{ - 1}&{ - 1}&{ - 1}&3\end{array}} \right] \sim \left[ {\begin{array}{*{20}{c}}1&1&1&1\\0&2&2&3\\0&0&0&4\end{array}} \right]\,\)

The equivalent system of equations using the echelon form is:

\(\begin{aligned}{c}x + y + z &= 1\\2y + 2z &= 3\\0 &= 4\end{aligned}\)

The last equation is not possible.

Therefore, the system is inconsistent.

05

Conclusion

Hence, the system has no solution. This ensures that \(b\)is not in the set spanned by the columns of\(A\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Find the elementary row operation that transforms the first matrix into the second, and then find the reverse row operation that transforms the second matrix into the first.

29. \(\left[ {\begin{array}{*{20}{c}}0&{ - 2}&5\\1&4&{ - 7}\\3&{ - 1}&6\end{array}} \right]\), \(\left[ {\begin{array}{*{20}{c}}1&4&{ - 7}\\0&{ - 2}&5\\3&{ - 1}&6\end{array}} \right]\)

In Exercises 10, write a vector equation that is equivalent tothe given system of equations.

10. \(4{x_1} + {x_2} + 3{x_3} = 9\)

\(\begin{array}{c}{x_1} - 7{x_2} - 2{x_3} = 2\\8{x_1} + 6{x_2} - 5{x_3} = 15\end{array}\)

Question: Determine whether the statements that follow are true or false, and justify your answer.

19. There exits a matrix A such thatA[-12]=[357].

Suppose Tand Ssatisfy the invertibility equations (1) and (2), where T is a linear transformation. Show directly that Sis a linear transformation. (Hint: Given u, v in \({\mathbb{R}^n}\), let \({\mathop{\rm x}\nolimits} = S\left( {\mathop{\rm u}\nolimits} \right),{\mathop{\rm y}\nolimits} = S\left( {\mathop{\rm v}\nolimits} \right)\). Then \(T\left( {\mathop{\rm x}\nolimits} \right) = {\mathop{\rm u}\nolimits} \), \(T\left( {\mathop{\rm y}\nolimits} \right) = {\mathop{\rm v}\nolimits} \). Why? Apply Sto both sides of the equation \(T\left( {\mathop{\rm x}\nolimits} \right) + T\left( {\mathop{\rm y}\nolimits} \right) = T\left( {{\mathop{\rm x}\nolimits} + y} \right)\). Also, consider \(T\left( {cx} \right) = cT\left( x \right)\).)

The following equation describes a Givens rotation in \({\mathbb{R}^3}\). Find \(a\) and \(b\).

\(\left( {\begin{aligned}{*{20}{c}}a&0&{ - b}\\0&1&0\\b&0&a\end{aligned}} \right)\left( {\begin{aligned}{*{20}{c}}{\bf{2}}\\{\bf{3}}\\{\bf{4}}\end{aligned}} \right) = \left( {\begin{aligned}{*{20}{c}}{{\bf{2}}\sqrt {\bf{5}} }\\{\bf{3}}\\{\bf{0}}\end{aligned}} \right)\), \({a^2} + {b^2} = 1\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free