Chapter 1: Q21Q (page 1)
Let \(T:{\mathbb{R}^3} \to {\mathbb{R}^3}\) be the linear transformation that reflects each vector through the plane \({x_{\bf{2}}} = 0\). That is, \(T\left( {{x_1},{x_2},{x_3}} \right) = \left( {{x_1}, - {x_2},{x_3}} \right)\). Find the standard matrix of \(T\).
Short Answer
\(\left( {\begin{aligned}{*{20}{c}}1&0&0\\0&{ - 1}&0\\0&0&1\end{aligned}} \right)\)