Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Let \(T:{\mathbb{R}^2} \to {\mathbb{R}^2}\) be a linear transformation such that \(T\left( {{x_1},{x_2}} \right) = \left( {{x_1} + {x_2},4{x_1} + 5{x_2}} \right)\). Find \({\mathop{\rm x}\nolimits} \) such that \(T\left( x \right) = \left( {3,8} \right)\).

Short Answer

Expert verified

The value of \(x\) is \(x = \left[ {\begin{array}{*{20}{c}}7\\{ - 4}\end{array}} \right]\) such that \(T\left( x \right) = \left( {3,8} \right)\).

Step by step solution

01

Determine the standard matrix of \(T\) by inspection

It is given that \(T\left( x \right) = \left[ {\begin{array}{*{20}{c}}3\\8\end{array}} \right]\).

Write the linear transformation into the standard matrix of \(T\) by inspection.

\[\begin{array}{c}T\left( x \right) = \left[ {\begin{array}{*{20}{c}}{{x_1} + {x_2}}\\{4{x_1} + 5{x_2}}\end{array}} \right]\\\left[ {\begin{array}{*{20}{c}}3\\8\end{array}} \right] = \left[ A \right]\left[ {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\end{array}} \right]\\\left[ {\begin{array}{*{20}{c}}3\\8\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}1&1\\4&5\end{array}} \right]\left[ {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\end{array}} \right]\end{array}\]

02

Write the standard matrix into an augmented matrix

Write the standard matrix into an augmented matrix.

\(\left[ {\begin{array}{*{20}{c}}1&1&3\\4&5&8\end{array}} \right]\)

03

Apply row operation

At row 2, multiply row 1 by 4 and subtract it from row 2.

\(\left[ {\begin{array}{*{20}{c}}1&1&3\\0&1&{ - 4}\end{array}} \right]\)

04

Apply row operation to find \(x\)

At row 1, multiply row 2 by \(1\) and subtract it from row 1.

\(\left[ {\begin{array}{*{20}{c}}1&0&7\\0&1&{ - 4}\end{array}} \right]\)

Thus, the value of \(x\) is \(x = \left[ {\begin{array}{*{20}{c}}7\\{ - 4}\end{array}} \right]\) such that \(T\left( x \right) = \left( {3,8} \right)\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free