Chapter 1: Q19E (page 39)
Question: Determine whether the statements that follow are true or false, and justify your answer.
19. There exits a matrix A such that.
Short Answer
It is true that there exists a matrix A such that .
Chapter 1: Q19E (page 39)
Question: Determine whether the statements that follow are true or false, and justify your answer.
19. There exits a matrix A such that.
It is true that there exists a matrix A such that .
All the tools & learning materials you need for study success - in one app.
Get started for freeSuppose the system below is consistent for all possible values of \(f\) and \(g\). What can you say about the coefficients \(c\) and \(d\)? Justify your answer.
27. \(\begin{array}{l}{x_1} + 3{x_2} = f\\c{x_1} + d{x_2} = g\end{array}\)
Let \(T:{\mathbb{R}^n} \to {\mathbb{R}^m}\) be a linear transformation, and suppose \(T\left( u \right) = {\mathop{\rm v}\nolimits} \). Show that \(T\left( { - u} \right) = - {\mathop{\rm v}\nolimits} \).
In Exercises 10, write a vector equation that is equivalent tothe given system of equations.
10. \(4{x_1} + {x_2} + 3{x_3} = 9\)
\(\begin{array}{c}{x_1} - 7{x_2} - 2{x_3} = 2\\8{x_1} + 6{x_2} - 5{x_3} = 15\end{array}\)
In Exercise 23 and 24, make each statement True or False. Justify each answer.
24.
a. Any list of five real numbers is a vector in \({\mathbb{R}^5}\).
b. The vector \({\mathop{\rm u}\nolimits} \) results when a vector \({\mathop{\rm u}\nolimits} - v\) is added to the vector \({\mathop{\rm v}\nolimits} \).
c. The weights \({{\mathop{\rm c}\nolimits} _1},...,{c_p}\) in a linear combination \({c_1}{v_1} + \cdot \cdot \cdot + {c_p}{v_p}\) cannot all be zero.
d. When are \({\mathop{\rm u}\nolimits} \) nonzero vectors, Span \(\left\{ {u,v} \right\}\) contains the line through \({\mathop{\rm u}\nolimits} \) and the origin.
e. Asking whether the linear system corresponding to an augmented matrix \(\left[ {\begin{array}{*{20}{c}}{{{\rm{a}}_{\rm{1}}}}&{{{\rm{a}}_{\rm{2}}}}&{{{\rm{a}}_{\rm{3}}}}&{\rm{b}}\end{array}} \right]\) has a solution amounts to asking whether \({\mathop{\rm b}\nolimits} \) is in Span\(\left\{ {{a_1},{a_2},{a_3}} \right\}\).
Let T be a linear transformation that maps \({\mathbb{R}^n}\) onto \({\mathbb{R}^n}\). Is \({T^{ - 1}}\) also one-to-one?
What do you think about this solution?
We value your feedback to improve our textbook solutions.