Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Give a geometric description of span \(\left\{ {{v_1},{v_2}} \right\}\) for the vectors \({{\mathop{\rm v}\nolimits} _1} = \left[ {\begin{array}{*{20}{c}}8\\2\\{ - 6}\end{array}} \right]\) and \({{\mathop{\rm v}\nolimits} _2} = \left[ {\begin{array}{*{20}{c}}{12}\\3\\{ - 9}\end{array}} \right]\).

Short Answer

Expert verified

Span \(\left\{ {{{\mathop{\rm v}\nolimits} _1},{v_2}} \right\}\) is the pair of points on the line passing through \({v_1}\) and 0.

Step by step solution

01

Write \({{\mathop{\rm v}\nolimits} _1}\) and \({{\mathop{\rm v}\nolimits} _2}\) in the linear combination 

Thescalar multiple of a vector\({\mathop{\rm u}\nolimits} \)by real number\(c\)is the vector\(c{\mathop{\rm u}\nolimits} \)obtained by multiplying each entry in\({\mathop{\rm u}\nolimits} \)by\(c\).

The linear combination of two vectors\({{\mathop{\rm v}\nolimits} _1}\)and\({{\mathop{\rm v}\nolimits} _2}\)is a multiple of\({{\mathop{\rm v}\nolimits} _1}\). Span\(\left\{ {{v_1},...,{v_p}} \right\}\)contains every scalar multiple of\({{\mathop{\rm v}\nolimits} _1}\).

Write the vectors\({{\mathop{\rm v}\nolimits} _1}\)and\({{\mathop{\rm v}\nolimits} _2}\)in a linear combination

\(a{v_1} + b{v_2}\)

02

Determine whether vector \({{\mathop{\rm v}\nolimits} _2}\) is a multiple of \({{\mathop{\rm v}\nolimits} _1}\)

Suppose\({\mathop{\rm v}\nolimits} \)is a nonzero vector in\({\mathbb{R}^3}\), then span\(\left\{ {\mathop{\rm v}\nolimits} \right\}\)is a set of all scalar multiples of\({\mathop{\rm v}\nolimits} \), which is the set of points on the line in\({\mathbb{R}^3}\)through\({\mathop{\rm v}\nolimits} \)and 0.

If\({\mathop{\rm u}\nolimits} \)and\(v\)are nonzero vectors in\({\mathbb{R}^3}\), then span\(\left\{ {u,v} \right\}\)is the plane in\({\mathbb{R}^3}\)that contains\({\mathop{\rm u}\nolimits} ,v\)and origin 0. In particular, span\(\left\{ {{\rm{u,v}}} \right\}\)contains the line in\({\mathbb{R}^3}\)through\({\mathop{\rm u}\nolimits} \)and 0 and the line through \({\mathop{\rm v}\nolimits} \)and 0.

Write vector \({{\mathop{\rm v}\nolimits} _2}\) as an expression of \({{\mathop{\rm v}\nolimits} _1}\) in the linear combination of vectors

\(\begin{array}{l}a{v_1} + b{v_2} = a\left[ {\begin{array}{*{20}{c}}8\\2\\{ - 6}\end{array}} \right] + b\left[ {\begin{array}{*{20}{c}}{12}\\3\\{ - 9}\end{array}} \right]\\a{v_1} + b{v_2} = a\left[ {\begin{array}{*{20}{c}}8\\2\\{ - 6}\end{array}} \right] + b\left( {\frac{3}{2}} \right)\left[ {\begin{array}{*{20}{c}}8\\2\\{ - 6}\end{array}} \right]\\a{v_1} + b{v_2} = a{v_1} + \frac{{3b}}{2}{v_1}\\a{v_1} + b{v_2} = \left( {a + \frac{{3b}}{2}} \right){v_1}\end{array}\)

03

Determine the geometric description of a span

Draw the graph for the geometric description of a span \({\mathbb{R}^3}\)

Since \({{\mathop{\rm v}\nolimits} _2}\) is a multiple of \({{\mathop{\rm v}\nolimits} _1}\), span \(\left\{ {{{\mathop{\rm v}\nolimits} _1},{v_2}} \right\}\) is a line in \({\mathbb{R}^3}\) spanned by \({v_1}\) and \({{\mathop{\rm v}\nolimits} _2}\).

Therefore, span \(\left\{ {{{\mathop{\rm v}\nolimits} _1},{v_2}} \right\}\) is the pair of points on the line passing through \({v_1}\) and 0.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free