Suppose\({\mathop{\rm v}\nolimits} \)is a nonzero vector in\({\mathbb{R}^3}\), then span\(\left\{ {\mathop{\rm v}\nolimits} \right\}\)is a set of all scalar multiples of\({\mathop{\rm v}\nolimits} \), which is the set of points on the line in\({\mathbb{R}^3}\)through\({\mathop{\rm v}\nolimits} \)and 0.
If\({\mathop{\rm u}\nolimits} \)and\(v\)are nonzero vectors in\({\mathbb{R}^3}\), then span\(\left\{ {u,v} \right\}\)is the plane in\({\mathbb{R}^3}\)that contains\({\mathop{\rm u}\nolimits} ,v\)and origin 0. In particular, span\(\left\{ {{\rm{u,v}}} \right\}\)contains the line in\({\mathbb{R}^3}\)through\({\mathop{\rm u}\nolimits} \)and 0 and the line through \({\mathop{\rm v}\nolimits} \)and 0.
Write vector \({{\mathop{\rm v}\nolimits} _2}\) as an expression of \({{\mathop{\rm v}\nolimits} _1}\) in the linear combination of vectors
\(\begin{array}{l}a{v_1} + b{v_2} = a\left[ {\begin{array}{*{20}{c}}8\\2\\{ - 6}\end{array}} \right] + b\left[ {\begin{array}{*{20}{c}}{12}\\3\\{ - 9}\end{array}} \right]\\a{v_1} + b{v_2} = a\left[ {\begin{array}{*{20}{c}}8\\2\\{ - 6}\end{array}} \right] + b\left( {\frac{3}{2}} \right)\left[ {\begin{array}{*{20}{c}}8\\2\\{ - 6}\end{array}} \right]\\a{v_1} + b{v_2} = a{v_1} + \frac{{3b}}{2}{v_1}\\a{v_1} + b{v_2} = \left( {a + \frac{{3b}}{2}} \right){v_1}\end{array}\)