Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Determine the values(s) of \(h\) such that matrix is the augmented matrix of a consistent linear system.

17. \(\left[ {\begin{array}{*{20}{c}}2&3&h\\4&6&7\end{array}} \right]\)

Short Answer

Expert verified

The value of \(h\) is \(\frac{7}{2}\).

Step by step solution

01

Apply row operation

A basic principle states that row operations do not affect the solution set of alinear system. Perform an elementary row operation to produce the first augmented matrix.

Apply the sum of row 2 and \( - 2\)times row 1 at row 2.

\(\left[ {\begin{array}{*{20}{c}}2&3&h\\0&0&{7 - 2h}\end{array}} \right]\)

02

Convert the matrix into the equation

To determine the value of \(h\), you have to convert the augmented matrix into a system of equations.

Write the obtained matrix into the equation notation.

\(\begin{array}{c}2{x_1} + 3{x_2} = h\\{x_1}\left( 0 \right) + {x_2}\left( 0 \right) = 7 - 2h\end{array}\)

03

Obtain the value of h

A system of linear equations has aunique solution and isconsistent if the numbers of nonzero rows and the number of variables are equal.

Now, obtain the value of \(h\) by equating \(7 - 2h\) to 0.

\(\begin{aligned}{c}7 - 2h = 0\\2h = 7\\h = \frac{7}{2}\end{aligned}\)

Thus, the value of \(h\) is \(\frac{7}{2}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Exercise 23 and 24, make each statement True or False. Justify each answer.

23.

a. Another notation for the vector \(\left[ {\begin{array}{*{20}{c}}{ - 4}\\3\end{array}} \right]\) is \(\left[ {\begin{array}{*{20}{c}}{ - 4}&3\end{array}} \right]\).

b. The points in the plane corresponding to \(\left[ {\begin{array}{*{20}{c}}{ - 2}\\5\end{array}} \right]\) and \(\left[ {\begin{array}{*{20}{c}}{ - 5}\\2\end{array}} \right]\) lie on a line through the origin.

c. An example of a linear combination of vectors \({{\mathop{\rm v}\nolimits} _1}\) and \({{\mathop{\rm v}\nolimits} _2}\) is the vector \(\frac{1}{2}{{\mathop{\rm v}\nolimits} _1}\).

d. The solution set of the linear system whose augmented matrix is \(\left[ {\begin{array}{*{20}{c}}{{a_1}}&{{a_2}}&{{a_3}}&b\end{array}} \right]\) is the same as the solution set of the equation\({{\mathop{\rm x}\nolimits} _1}{a_1} + {x_2}{a_2} + {x_3}{a_3} = b\).

e. The set Span \(\left\{ {u,v} \right\}\) is always visualized as a plane through the origin.

Determine the values(s) of \(h\) such that matrix is the augmented matrix of a consistent linear system.

18. \(\left[ {\begin{array}{*{20}{c}}1&{ - 3}&{ - 2}\\5&h&{ - 7}\end{array}} \right]\)

Let \(u = \left[ {\begin{array}{*{20}{c}}2\\{ - 1}\end{array}} \right]\) and \(v = \left[ {\begin{array}{*{20}{c}}2\\1\end{array}} \right]\). Show that \(\left[ {\begin{array}{*{20}{c}}h\\k\end{array}} \right]\) is in Span \(\left\{ {u,v} \right\}\) for all \(h\) and\(k\).

Find all the polynomials of degree2[a polynomial of the formf(t)=a+bt+ct2] whose graph goes through the points (1,3)and(2,6),such that f'(1)=1[wheref'(t)denotes the derivative].

Find the polynomial of degree 2[a polynomial of the form f(t)=a+bt+ct2] whose graph goes through the points localid="1659342678677" (1,-1),(2,3)and(3,13).Sketch the graph of the polynomial.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free