Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In Exercises 15 and 16, mark each statement True or False. Justify each answer. Unless stated otherwise, \(B\) is a basis for a vector space \(V\).

15.

a. If \({\mathop{\rm x}\nolimits} \) is in \(V\) and if \(B\) contains \(n\) vectors, then the \(B - \)coordinate vector of \({\mathop{\rm x}\nolimits} \) is in \({\mathbb{R}^n}\).

b. If \({P_B}\) is the change-of-coordinates matrix, then \({\left( {\mathop{\rm x}\nolimits} \right)_B} = {P_B}{\mathop{\rm x}\nolimits} \), for x in \(V\).

c. The vector spaces \({{\mathop{\rm P}\nolimits} _3}\) and \({\mathbb{R}^3}\) are isomorphic.

Short Answer

Expert verified

a. The given statement is true.

b. The given statement is false.

c. The given statement is false.

Step by step solution

01

Determine whether the given statement is true or false

a)

Suppose \(B = \left\{ {{{\mathop{\rm b}\nolimits} _1},...,{{\mathop{\rm b}\nolimits} _n}} \right\}\) is a basis for \(V\) and x is in \(V\). Thecoordinatesof \({\mathop{\rm x}\nolimits} \) relative to basis \(B\)(or the \(B\)-coordinates of x) are the weights \({c_1},...,{c_n}\), such that \({\mathop{\rm x}\nolimits} = {c_1}{b_1} + ... + {c_n}{b_n}\).

Thus, statement (a) is true.

02

Determine whether the given statement is true or false

b)

As \({P_B} = \left( {\begin{array}{*{20}{c}}{{{\mathop{\rm b}\nolimits} _1}}&{{{\mathop{\rm b}\nolimits} _2}}& \cdots &{{{\mathop{\rm b}\nolimits} _n}}\end{array}} \right)\), thevector equation\({\mathop{\rm x}\nolimits} = {c_1}{{\mathop{\rm b}\nolimits} _1} + {c_2}{{\mathop{\rm b}\nolimits} _2} + ... + {c_n}{{\mathop{\rm b}\nolimits} _n}\)is equivalent to \({\mathop{\rm x}\nolimits} = {P_B}{\left( {\mathop{\rm x}\nolimits} \right)_B}\). \({P_B}\) represents the change-of-coordinates matrixfrom \(B\) to the standard basis in \({\mathbb{R}^n}\).

Thus, statement (b) is false.

03

Determine whether the given statement is true or false

c)

The coordinate mapping \({\mathop{\rm p}\nolimits} \mapsto {\left( {\mathop{\rm p}\nolimits} \right)_B}\) is isomorphismfrom \({{\mathop{\rm P}\nolimits} _3}\) onto \({\mathbb{R}^4}\). All vector space operations in \({{\mathop{\rm P}\nolimits} _3}\) correspond to operations in \({\mathbb{R}^4}\). \({{\mathop{\rm P}\nolimits} _3}\) is isomorphic to \({\mathbb{R}^4}\).

Thus, statement (c) is false.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free