Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Let \(b = \left[ {\begin{array}{*{20}{c}}{ - 1}\\3\\{ - 1}\\4\end{array}} \right]\), and let \(A\) be the matrix in exercise 10. Is \(b\)in the range of linear transformation\(x \mapsto Ax\)? Why or why not?

Short Answer

Expert verified

The system represented by \(\left[ {A\,\,b} \right]\) is inconsistent; so \(b\) is not in the range of \(x \to Ax\).

Step by step solution

01

Formation of the augmented matrix

Using matrix \(A = \left[ {\begin{array}{*{20}{c}}1&3&9&2\\1&0&3&{ - 4}\\0&1&2&3\\{ - 2}&3&0&5\end{array}} \right]\) and \(b = \left[ {\begin{array}{*{20}{c}}{ - 1}\\3\\{ - 1}\\4\end{array}} \right]\), form the augmented matrix \(\left[ {A\,\,b} \right]\).

\(\left[ {\begin{array}{*{20}{c}}1&3&9&2&{ - 1}\\1&0&3&{ - 4}&3\\0&1&2&3&{ - 1}\\{ - 2}&3&0&5&4\end{array}} \right]\)

02

Simplification of the augmented matrix using row operations

Simplify the augmented matrix using row operations.

At row 4, multiply row 1 with 2 and add it to row 1, i.e. \({R_4} \to {R_4} + 2{R_1}\).

\(\left[ {\begin{array}{*{20}{c}}1&3&9&2&{ - 1}\\1&0&3&{ - 4}&3\\0&1&2&3&{ - 1}\\{ - 2 + 2\left( 1 \right)}&{3 + 2\left( 3 \right)}&{0 + 2\left( 9 \right)}&{5 + 2\left( 2 \right)}&{4 + 2\left( { - 1} \right)}\end{array}} \right]\)

After the row operation, the matrix will become:

\(\left[ {\begin{array}{*{20}{c}}1&3&9&2&{ - 1}\\1&0&3&{ - 4}&3\\0&1&2&3&{ - 1}\\0&9&{18}&9&2\end{array}} \right]\)

03

Simplification of the augmented matrix using row operations

At row 2, subtract row 2 from row 1, i.e. \({R_2} \to {R_2} - {R_1}\).

\(\left[ {\begin{array}{*{20}{c}}1&3&9&2&{ - 1}\\{1 - 1}&{0 - 3}&{3 - 9}&{ - 4 - 2}&{3 + 1}\\0&1&2&3&{ - 1}\\0&9&{18}&9&2\end{array}} \right]\)

After the row operation, the matrix will become:

\(\left[ {\begin{array}{*{20}{c}}1&3&9&2&{ - 1}\\0&{ - 3}&{ - 6}&{ - 6}&4\\0&1&2&3&{ - 1}\\0&9&{18}&9&2\end{array}} \right]\)

Interchange row 2 and row 3, i.e. \({R_2} \leftrightarrow {R_3}\).

\(\left[ {\begin{array}{*{20}{c}}1&3&9&2&{ - 1}\\0&1&2&3&{ - 1}\\0&{ - 3}&{ - 6}&{ - 6}&4\\0&9&{18}&9&2\end{array}} \right]\)

04

Simplification of the augmented matrix using row operations

For row 4, multiply row 3 with 3 and add it to row 4, i.e. \({R_4} \to {R_4} + 3{R_3}\).

\(\left[ {\begin{array}{*{20}{c}}1&3&9&2&{ - 1}\\0&1&2&3&{ - 1}\\0&{ - 3}&{ - 6}&{ - 6}&4\\0&{9 + 3\left( { - 3} \right)}&{18 + 3\left( { - 6} \right)}&{9 + 3\left( { - 6} \right)}&{2 + 3\left( 4 \right)}\end{array}} \right]\)

After the row operation, the matrix will become:

\(\left[ {\begin{array}{*{20}{c}}1&3&9&2&{ - 1}\\0&1&2&3&{ - 1}\\0&{ - 3}&{ - 6}&{ - 6}&4\\0&0&0&{ - 9}&{14}\end{array}} \right]\)

05

Simplification of the augmented matrix using row operations

At row 3, multiply row 2 with 3 and add it to row 3, i.e. \({R_3} \to {R_3} + 3{R_2}\).

\(\left[ {\begin{array}{*{20}{c}}1&3&9&2&{ - 1}\\0&1&2&3&{ - 1}\\0&{ - 3 + 3\left( 1 \right)}&{ - 6 + 3\left( 2 \right)}&{ - 6 + 3\left( 3 \right)}&{4 + 3\left( { - 1} \right)}\\0&0&0&{ - 9}&{14}\end{array}} \right]\)

After the row operation, the matrix will become:

\(\left[ {\begin{array}{*{20}{c}}1&3&9&2&{ - 1}\\0&1&2&3&{ - 1}\\0&0&0&3&1\\0&0&0&{ - 9}&{14}\end{array}} \right]\)

As the system given by \(\left[ {A\,\,b} \right]\) is inconsistent, so \(b\) is not in the range of transformation \(x \to Ax\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Find the elementary row operation that transforms the first matrix into the second, and then find the reverse row operation that transforms the second matrix into the first.

29. \(\left[ {\begin{array}{*{20}{c}}0&{ - 2}&5\\1&4&{ - 7}\\3&{ - 1}&6\end{array}} \right]\), \(\left[ {\begin{array}{*{20}{c}}1&4&{ - 7}\\0&{ - 2}&5\\3&{ - 1}&6\end{array}} \right]\)

A Givens rotation is a linear transformation from \({\mathbb{R}^{\bf{n}}}\) to \({\mathbb{R}^{\bf{n}}}\) used in computer programs to create a zero entry in a vector (usually a column of matrix). The standard matrix of a given rotations in \({\mathbb{R}^{\bf{2}}}\) has the form

\(\left( {\begin{aligned}{*{20}{c}}a&{ - b}\\b&a\end{aligned}} \right)\), \({a^2} + {b^2} = 1\)

Find \(a\) and \(b\) such that \(\left( {\begin{aligned}{*{20}{c}}4\\3\end{aligned}} \right)\) is rotated into \(\left( {\begin{aligned}{*{20}{c}}5\\0\end{aligned}} \right)\).

Let T be a linear transformation that maps \({\mathbb{R}^n}\) onto \({\mathbb{R}^n}\). Is \({T^{ - 1}}\) also one-to-one?

Give a geometric description of Span \(\left\{ {{v_1},{v_2}} \right\}\) for the vectors in Exercise 16.

In Exercises 32, find the elementary row operation that transforms the first matrix into the second, and then find the reverse row operation that transforms the second matrix into the first.

32. \(\left[ {\begin{array}{*{20}{c}}1&2&{ - 5}&0\\0&1&{ - 3}&{ - 2}\\0&{ - 3}&9&5\end{array}} \right]\), \(\left[ {\begin{array}{*{20}{c}}1&2&{ - 5}&0\\0&1&{ - 3}&{ - 2}\\0&0&0&{ - 1}\end{array}} \right]\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free