Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In Exercises 7-12, describe all solutions of \(Ax = 0\) in parametric vector form, where \(A\) is row equivalent to the given matrix.

12. \(\left( {\begin{array}{*{20}{c}}1&5&2&{ - 6}&9&0\\0&0&1&{ - 7}&4&{ - 8}\\0&0&0&0&0&1\\0&0&0&0&0&0\end{array}} \right)\)

Short Answer

Expert verified

The solution in the parametric vector form is \(\left( {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\\{{x_3}}\\{{x_4}}\\{{x_5}}\\{{x_6}}\end{array}} \right) = {x_2}\left( {\begin{array}{*{20}{c}}{ - 5}\\1\\0\\0\\0\\0\end{array}} \right) + {x_4}\left( {\begin{array}{*{20}{c}}{ - 8}\\0\\7\\1\\0\\0\end{array}} \right) + {x_5}\left( {\begin{array}{*{20}{c}}{ - 1}\\0\\{ - 4}\\0\\1\\0\end{array}} \right).\).

Step by step solution

01

Write the matrix in the augmented form

The number of columns in matrix \(A\) should be equal to the number of entries in vector x so that \(A{\bf{x}}\) can be defined.

Consider matrix \(A = \left( {\begin{array}{*{20}{c}}1&5&2&{ - 6}&9&0\\0&0&1&{ - 7}&4&{ - 8}\\0&0&0&0&1&0\\0&0&0&0&0&0\end{array}} \right)\) in the augmented form, \(\left( {\begin{array}{*{20}{c}}A&0\end{array}} \right)\), as shown below:

\(\left( {\begin{array}{*{20}{c}}A&0\end{array}} \right) = \left( {\begin{array}{*{20}{c}}1&5&2&{ - 6}&9&0&0\\0&0&1&{ - 7}&4&{ - 8}&0\\0&0&0&0&0&1&0\\0&0&0&0&0&0&0\end{array}} \right)\)

Use \({x_6}\) in the third equation to eliminate \( - 8{x_6}\) from the second equation. Add 8 times row three to row two.

\(\left( {\begin{array}{*{20}{c}}A&0\end{array}} \right) = \left( {\begin{array}{*{20}{c}}1&5&2&{ - 6}&9&0&0\\0&0&1&{ - 7}&4&0&0\\0&0&0&0&0&1&0\\0&0&0&0&0&0&0\end{array}} \right)\)

Use \({x_3}\) in the second equation to eliminate \(2{x_3}\) from the first equation. Add \( - 2\) times row two to row one.

\(\left( {\begin{array}{*{20}{c}}A&0\end{array}} \right) = \left( {\begin{array}{*{20}{c}}1&5&0&8&1&0&0\\0&0&1&{ - 7}&4&0&0\\0&0&0&0&0&1&0\\0&0&0&0&0&0&0\end{array}} \right)\)

02

Write the augmented matrix in the system of equations

It is given that there are six columns in the given matrix, which means there should be six entries in vector x.

Thus, the equation \(A{\bf{x}} = 0\) can be written as shown below:

\(\begin{array}{c}A{\bf{x}} = 0\\\left( {\begin{array}{*{20}{c}}1&5&0&8&1&0&0\\0&0&1&{ - 7}&4&0&0\\0&0&0&0&0&1&0\\0&0&0&0&0&0&0\end{array}} \right)\left( {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\\{{x_3}}\\{{x_4}}\\{{x_5}}\\{{x_6}}\end{array}} \right) = \left( {\begin{array}{*{20}{c}}0\\0\\0\\0\end{array}} \right)\end{array}\)

Write the above matrix equation in the system of equations as shown below:

\(\begin{array}{c}{x_1}\left( {\begin{array}{*{20}{c}}1\\0\\0\\0\end{array}} \right) + {x_2}\left( {\begin{array}{*{20}{c}}5\\0\\0\\0\end{array}} \right) + {x_3}\left( {\begin{array}{*{20}{c}}0\\1\\0\\0\end{array}} \right) + {x_4}\left( {\begin{array}{*{20}{c}}8\\{ - 7}\\0\\0\end{array}} \right) + {x_5}\left( {\begin{array}{*{20}{c}}1\\4\\0\\0\end{array}} \right) + {x_6}\left( {\begin{array}{*{20}{c}}0\\0\\1\\0\end{array}} \right) = \left( {\begin{array}{*{20}{c}}0\\0\\0\\0\end{array}} \right)\\\left( {\begin{array}{*{20}{c}}{{x_1} + 5{x_2} + \left( 0 \right){x_3} + 8{x_4} + {x_5} + \left( 0 \right){x_6}}\\{\left( 0 \right){x_1} + \left( 0 \right){x_2} + {x_3} - 7{x_4} + 4{x_5} + \left( 0 \right){x_6}}\\{\left( 0 \right){x_1} + \left( 0 \right){x_2} + \left( 0 \right){x_3} + \left( 0 \right){x_4} + \left( 0 \right){x_5} + {x_6}}\\{\left( 0 \right){x_1} + \left( 0 \right){x_2} + \left( 0 \right){x_3} + \left( 0 \right){x_4} + \left( 0 \right){x_5} + \left( 0 \right){x_6}}\end{array}} \right) = \left( {\begin{array}{*{20}{c}}0\\0\\0\\0\end{array}} \right)\end{array}\)

So, the system of equations becomes

\(\begin{array}{c}{x_1} + 5{x_2} + 8{x_4} + {x_5} = 0\\{x_3} - 7{x_4} + 4{x_5} = 0\\{x_6} = 0.\end{array}\)

03

Separate the variables into free and basic types

From the above equations, \({x_1}\), \({x_3}\), and \({x_6}\) are the pivot positions. So, \({x_1}\), \({x_3}\), \({x_6}\) are basic variables, and \({x_2}\), \({x_4}\), \({x_5}\) are the free variables.

So, let \({x_2} = a\), \({x_4} = b\), \({x_5} = c\).

04

Obtain the value of basic variables in parametric forms

Substitute \({x_4} = b\), and \({x_5} = c\) in the equation \({x_3} - 7{x_4} + 4{x_5} = 0\) to obtain the general solution.

\(\begin{array}{c}{x_3} - 7\left( b \right) + 4\left( c \right) = 0\\{x_3} = 7b - 4c\end{array}\)

Substitute \({x_2} = a\), \({x_4} = b\), and \({x_5} = c\) in the equation \({x_1} + 5{x_2} + 8{x_4} + {x_5} = 0\) to obtain the general solution.

\(\begin{array}{c}{x_1} + 5\left( a \right) + 8\left( b \right) + \left( c \right) = 0\\{x_1} = - 5a - 8b - c\end{array}\)

05

Write the solution in the parametric form

Obtain the vector in the parametric form by using \({x_1} = - 5a - 8b - c\), \({x_2} = a\), \({x_3} = 7b - 4c\), \({x_4} = b\), \({x_5} = c\), and \({x_6} = 0\).

\(\begin{array}{c}\left( {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\\{{x_3}}\\{{x_4}}\\{{x_5}}\\{{x_6}}\end{array}} \right) = \left( {\begin{array}{*{20}{c}}{ - 5a - 8b - c}\\a\\{7b - 4c}\\b\\c\\0\end{array}} \right)\\ = \left( {\begin{array}{*{20}{c}}{ - 5a}\\a\\0\\0\\0\\0\end{array}} \right) + \left( {\begin{array}{*{20}{c}}{ - 8b}\\0\\{7b}\\b\\0\\0\end{array}} \right) + \left( {\begin{array}{*{20}{c}}{ - c}\\0\\{ - 4c}\\0\\c\\0\end{array}} \right)\\ = a\left( {\begin{array}{*{20}{c}}{ - 5}\\1\\0\\0\\0\\0\end{array}} \right) + b\left( {\begin{array}{*{20}{c}}{ - 8}\\0\\7\\1\\0\\0\end{array}} \right) + c\left( {\begin{array}{*{20}{c}}{ - 1}\\0\\{ - 4}\\0\\1\\0\end{array}} \right)\end{array}\)

Or it can be written as shown below:

\(\left( {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\\{{x_3}}\\{{x_4}}\\{{x_5}}\\{{x_6}}\end{array}} \right) = {x_2}\left( {\begin{array}{*{20}{c}}{ - 5}\\1\\0\\0\\0\\0\end{array}} \right) + {x_4}\left( {\begin{array}{*{20}{c}}{ - 8}\\0\\7\\1\\0\\0\end{array}} \right) + {x_5}\left( {\begin{array}{*{20}{c}}{ - 1}\\0\\{ - 4}\\0\\1\\0\end{array}} \right)\)

Thus, the solution in the parametric vector form is:\(\left( {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\\{{x_3}}\\{{x_4}}\\{{x_5}}\\{{x_6}}\end{array}} \right) = {x_2}\left( {\begin{array}{*{20}{c}}{ - 5}\\1\\0\\0\\0\\0\end{array}} \right) + {x_4}\left( {\begin{array}{*{20}{c}}{ - 8}\\0\\7\\1\\0\\0\end{array}} \right) + {x_5}\left( {\begin{array}{*{20}{c}}{ - 1}\\0\\{ - 4}\\0\\1\\0\end{array}} \right)\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free