Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Find the general solutions of the systems whose augmented matrices are given as

12. \(\left[ {\begin{array}{*{20}{c}}1&{ - 7}&0&6&5\\0&0&1&{ - 2}&{ - 3}\\{ - 1}&7&{ - 4}&2&7\end{array}} \right]\).

Short Answer

Expert verified

The general solution of the system is

\({x_1} = 5 + 7{x_2} - 6{x_4}\)

\({x_2}\)is free.

\({x_3} = - 3 + 2{x_4}\)

\({x_4}\) is free.

Step by step solution

01

Apply row operation

A basic principle states that row operations do not affect the solution set of a linear system. Perform an elementary row operation to produce the first augmented matrix.

Replace row \(3\) by adding row 1 to row 3.

\(\left[ {\begin{array}{*{20}{c}}1&{ - 7}&0&6&5\\0&0&1&{ - 2}&{ - 3}\\0&0&{ - 4}&8&{12}\end{array}} \right]\)

02

Apply row operation

Perform an elementary row operationto produce a second augmented matrix.

Replace row 3 by adding\(4\)times row 2 to row 3.

\(\left[ {\begin{array}{*{20}{c}}1&{ - 7}&0&6&5\\0&0&1&{ - 2}&{ - 3}\\0&0&0&0&0\end{array}} \right]\)

03

Convert the matrix into the equation

To obtain the general solution of the system, you have to convert the augmented matrix into the system of equations.

Write the obtained matrix into the equation notation.

\(\begin{array}{l}{x_1} - 7{x_2} + 6{x_4} = 5\\{x_3} - 2{x_4} = - 3\end{array}\)

Thus, the general solution of the system is

\({x_1} = 5 + 7{x_2} - 6{x_4}\)

\({x_2}\)is free.

\({x_3} = - 3 + 2{x_4}\)

\({x_4}\) is free.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Exercise 19 and 20, choose \(h\) and \(k\) such that the system has

a. no solution

b. unique solution

c. many solutions.

Give separate answers for each part.

19. \(\begin{array}{l}{x_1} + h{x_2} = 2\\4{x_1} + 8{x_2} = k\end{array}\)

In Exercises 13 and 14, determine if \({\mathop{\rm b}\nolimits} \) is a linear combination of the vectors formed from the columns of the matrix \(A\).

14. \(A = \left[ {\begin{array}{*{20}{c}}1&{ - 2}&{ - 6}\\0&3&7\\1&{ - 2}&5\end{array}} \right],{\mathop{\rm b}\nolimits} = \left[ {\begin{array}{*{20}{c}}{11}\\{ - 5}\\9\end{array}} \right]\)

In Exercise 23 and 24, make each statement True or False. Justify each answer.

23.

a. Another notation for the vector \(\left[ {\begin{array}{*{20}{c}}{ - 4}\\3\end{array}} \right]\) is \(\left[ {\begin{array}{*{20}{c}}{ - 4}&3\end{array}} \right]\).

b. The points in the plane corresponding to \(\left[ {\begin{array}{*{20}{c}}{ - 2}\\5\end{array}} \right]\) and \(\left[ {\begin{array}{*{20}{c}}{ - 5}\\2\end{array}} \right]\) lie on a line through the origin.

c. An example of a linear combination of vectors \({{\mathop{\rm v}\nolimits} _1}\) and \({{\mathop{\rm v}\nolimits} _2}\) is the vector \(\frac{1}{2}{{\mathop{\rm v}\nolimits} _1}\).

d. The solution set of the linear system whose augmented matrix is \(\left[ {\begin{array}{*{20}{c}}{{a_1}}&{{a_2}}&{{a_3}}&b\end{array}} \right]\) is the same as the solution set of the equation\({{\mathop{\rm x}\nolimits} _1}{a_1} + {x_2}{a_2} + {x_3}{a_3} = b\).

e. The set Span \(\left\{ {u,v} \right\}\) is always visualized as a plane through the origin.

Write the reduced echelon form of a \(3 \times 3\) matrix A such that the first two columns of Aare pivot columns and

\(A = \left( {\begin{aligned}{*{20}{c}}3\\{ - 2}\\1\end{aligned}} \right) = \left( {\begin{aligned}{*{20}{c}}0\\0\\0\end{aligned}} \right)\).

In Exercises 15 and 16, list five vectors in Span \(\left\{ {{v_1},{v_2}} \right\}\). For each vector, show the weights on \({{\mathop{\rm v}\nolimits} _1}\) and \({{\mathop{\rm v}\nolimits} _2}\) used to generate the vector and list the three entries of the vector. Do not make a sketch.

16. \({{\mathop{\rm v}\nolimits} _1} = \left[ {\begin{array}{*{20}{c}}3\\0\\2\end{array}} \right],{v_2} = \left[ {\begin{array}{*{20}{c}}{ - 2}\\0\\3\end{array}} \right]\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free