Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Determine which of the matrices in Exercises 7–12areorthogonal. If orthogonal, find the inverse.

11. \(\left( {\begin{aligned}{{}}{2/3}&{2/3}&{1/3}\\0&{1/3}&{ - 2/3}\\{5/3}&{ - 4/3}&{ - 2/3}\end{aligned}} \right)\)

Short Answer

Expert verified

The given matrix is not an orthogonal matrix.

Step by step solution

01

Find the characteristic equation

A matrix\(P\) with, \(n \times n\) dimension, is orthogonal if it satisfies the equation\({P^T}P = {I_n}\).

It is given that\(P = \left( {\begin{aligned}{{}}{2/3}&{2/3}&{2/3}\\0&{1/3}&{ - 2/3}\\{5/3}&{ - 4/3}&{ - 2/3}\end{aligned}} \right)\).

Find the matrix\({P^T}P\)as shown below:

\(\begin{aligned}{}{P^T}P &= \left( {\begin{aligned}{{}}{2/3}&{2/3}&{2/3}\\0&{1/3}&{ - 2/3}\\{5/3}&{ - 4/3}&{ - 2/3}\end{aligned}} \right)\left( {\begin{aligned}{{}}{2/3}&{2/3}&{2/3}\\0&{1/3}&{ - 2/3}\\{5/3}&{ - 4/3}&{ - 2/3}\end{aligned}} \right)\\ &= \left( {\begin{aligned}{{}}{\,\,\,29/9}&{ - 16/9}&{ - 8/9}\\{ - 16/9}&{\,\,\,21/9}&{\,\,\,8/9}\\{\, - 8/9}&{\,\,\,8/9}&1\end{aligned}} \right)\\ & \ne {I_3}\end{aligned}\)

02

Draw a conclusion

As \({P^T}P \ne {I_3}\), it can be concluded that \(P\) is not an orthogonal matrix.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question:Let A be the n x n matrix with 0's on the main diagonal, and 1's everywhere else. For an arbitrary vector bin n, solve the linear system Ax=b, expressing the components x1,.......,xnof xin terms of the components of b. See Exercise 69 for the case n=3 .

An important concern in the study of heat transfer is to determine the steady-state temperature distribution of a thin plate when the temperature around the boundary is known. Assume the plate shown in the figure represents a cross section of a metal beam, with negligible heat flow in the direction perpendicular to the plate. Let \({T_1},...,{T_4}\) denote the temperatures at the four interior nodes of the mesh in the figure. The temperature at a node is approximately equal to the average of the four nearest nodes—to the left, above, to the right, and below. For instance,

\({T_1} = \left( {10 + 20 + {T_2} + {T_4}} \right)/4\), or \(4{T_1} - {T_2} - {T_4} = 30\)

33. Write a system of four equations whose solution gives estimates

for the temperatures \({T_1},...,{T_4}\).

Write the reduced echelon form of a \(3 \times 3\) matrix A such that the first two columns of Aare pivot columns and

\(A = \left( {\begin{aligned}{*{20}{c}}3\\{ - 2}\\1\end{aligned}} \right) = \left( {\begin{aligned}{*{20}{c}}0\\0\\0\end{aligned}} \right)\).

Show that if ABis invertible, so is B.

Let \(A = \left[ {\begin{array}{*{20}{c}}1&0&{ - 4}\\0&3&{ - 2}\\{ - 2}&6&3\end{array}} \right]\) and \(b = \left[ {\begin{array}{*{20}{c}}4\\1\\{ - 4}\end{array}} \right]\). Denote the columns of \(A\) by \({{\mathop{\rm a}\nolimits} _1},{a_2},{a_3}\) and let \(W = {\mathop{\rm Span}\nolimits} \left\{ {{a_1},{a_2},{a_3}} \right\}\).

  1. Is \(b\) in \(\left\{ {{a_1},{a_2},{a_3}} \right\}\)? How many vectors are in \(\left\{ {{a_1},{a_2},{a_3}} \right\}\)?
  2. Is \(b\) in \(W\)? How many vectors are in W.
  3. Show that \({a_1}\) is in W.[Hint: Row operations are unnecessary.]
See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free