Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In Exercises 7-12, describe all solutions of \(Ax = 0\) in parametric vector form, where \(A\) is row equivalent to the given matrix.

10. \(\left[ {\begin{array}{*{20}{c}}1&3&0&{ - 4}\\2&6&0&{ - 8}\end{array}} \right]\)

Short Answer

Expert verified

The general solution in the parametric vector form is \(x = {x_2}\left[ {\begin{array}{*{20}{c}}{ - 3}\\1\\0\\0\end{array}} \right] + {x_3}\left[ {\begin{array}{*{20}{c}}0\\0\\1\\0\end{array}} \right] + {x_4}\left[ {\begin{array}{*{20}{c}}4\\0\\0\\1\end{array}} \right]\).

Step by step solution

01

Write the matrix as an augmented matrix

The augmented matrix \(\left[ {\begin{array}{*{20}{c}}A&0\end{array}} \right]\) for the given matrix is represented as:

\[\left[ {\begin{array}{*{20}{c}}1&3&0&{ - 4}&0\\2&6&0&{ - 8}&0\end{array}} \right]\]

02

Apply row operation

Perform an elementary row operation to produce the first augmented matrix.

Perform the sum of \( - 2\) times row 1 and row 2 at row 2.

\(\left[ {\begin{array}{*{20}{c}}1&3&0&{ - 4}&0\\0&0&0&0&0\end{array}} \right]\)

03

Convert the matrix into the equation

To obtain the solution of the system of equations, you have to convert the augmented matrix into the system of equations again.

Write the obtained matrix \(\left[ {\begin{array}{*{20}{c}}1&3&0&{ - 4}&0\\0&0&0&0&0\end{array}} \right]\)into the equation notation.

\[\begin{array}{c}{x_1} + 3{x_2} - 4{x_4} = 0\\0 = 0\end{array}\]

04

Determine the basic variable and free variable of the system

The variables corresponding to the pivot columns in the matrix are called basic variables.The other variable is called a free variable.

\({x_1}\) is a basic variable, and \({x_2},{x_3}\), and \({x_4}\) are free variables.

Thus, \({x_1} = - 3{x_2} + 4{x_4}\).

05

Determine the general solution in the parametric vector form

Sometimes the parametric form of an equation is written as\(x = s{\mathop{\rm u}\nolimits} + t{\mathop{\rm v}\nolimits} \,\,\,\left( {s,t\,{\mathop{\rm in}\nolimits} \,\mathbb{R}} \right)\).

The general solution of \(Ax = 0\) in the parametric vector form can be represented as:

\(\begin{array}{c}x = \left[ {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\\{{x_3}}\\{{x_4}}\end{array}} \right]\\ = \left[ {\begin{array}{*{20}{c}}{ - 3{x_2} + 4{x_4}}\\{{x_2}}\\{{x_3}}\\{{x_4}}\end{array}} \right]\\ = \left[ {\begin{array}{*{20}{c}}{ - 3{x_2}}\\{{x_2}}\\0\\0\end{array}} \right] + \left[ {\begin{array}{*{20}{c}}0\\0\\{{x_3}}\\0\end{array}} \right] + \left[ {\begin{array}{*{20}{c}}{4{x_4}}\\0\\0\\{{x_4}}\end{array}} \right]\\ = {x_2}\left[ {\begin{array}{*{20}{c}}{ - 3}\\1\\0\\0\end{array}} \right] + {x_3}\left[ {\begin{array}{*{20}{c}}0\\0\\1\\0\end{array}} \right] + {x_4}\left[ {\begin{array}{*{20}{c}}4\\0\\0\\1\end{array}} \right]\end{array}\)

Thus, the general solution in the parametric vector form is \(x = {x_2}\left[ {\begin{array}{*{20}{c}}{ - 3}\\1\\0\\0\end{array}} \right] + {x_3}\left[ {\begin{array}{*{20}{c}}0\\0\\1\\0\end{array}} \right] + {x_4}\left[ {\begin{array}{*{20}{c}}4\\0\\0\\1\end{array}} \right]\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Describe the possible echelon forms of the matrix A. Use the notation of Example 1 in Section 1.2.

a. A is a \({\bf{2}} \times {\bf{3}}\) matrix whose columns span \({\mathbb{R}^{\bf{2}}}\).

b. A is a \({\bf{3}} \times {\bf{3}}\) matrix whose columns span \({\mathbb{R}^{\bf{3}}}\).

Let a and b represent real numbers. Describe the possible solution sets of the (linear) equation \(ax = b\). (Hint:The number of solutions depends upon a and b.)

Let \(A\) be a \(3 \times 3\) matrix with the property that the linear transformation \({\bf{x}} \mapsto A{\bf{x}}\) maps \({\mathbb{R}^3}\) into \({\mathbb{R}^3}\). Explain why transformation must be one-to-one.

In Exercise 23 and 24, make each statement True or False. Justify each answer.

24.

a. Any list of five real numbers is a vector in \({\mathbb{R}^5}\).

b. The vector \({\mathop{\rm u}\nolimits} \) results when a vector \({\mathop{\rm u}\nolimits} - v\) is added to the vector \({\mathop{\rm v}\nolimits} \).

c. The weights \({{\mathop{\rm c}\nolimits} _1},...,{c_p}\) in a linear combination \({c_1}{v_1} + \cdot \cdot \cdot + {c_p}{v_p}\) cannot all be zero.

d. When are \({\mathop{\rm u}\nolimits} \) nonzero vectors, Span \(\left\{ {u,v} \right\}\) contains the line through \({\mathop{\rm u}\nolimits} \) and the origin.

e. Asking whether the linear system corresponding to an augmented matrix \(\left[ {\begin{array}{*{20}{c}}{{{\rm{a}}_{\rm{1}}}}&{{{\rm{a}}_{\rm{2}}}}&{{{\rm{a}}_{\rm{3}}}}&{\rm{b}}\end{array}} \right]\) has a solution amounts to asking whether \({\mathop{\rm b}\nolimits} \) is in Span\(\left\{ {{a_1},{a_2},{a_3}} \right\}\).

In (a) and (b), suppose the vectors are linearly independent. What can you say about the numbers \(a,....,f\) ? Justify your answers. (Hint: Use a theorem for (b).)

  1. \(\left( {\begin{aligned}{*{20}{c}}a\\0\\0\end{aligned}} \right),\left( {\begin{aligned}{*{20}{c}}b\\c\\d\end{aligned}} \right),\left( {\begin{aligned}{*{20}{c}}d\\e\\f\end{aligned}} \right)\)
  2. \(\left( {\begin{aligned}{*{20}{c}}a\\1\\0\\0\end{aligned}} \right),\left( {\begin{aligned}{*{20}{c}}b\\c\\1\\0\end{aligned}} \right),\left( {\begin{aligned}{*{20}{c}}d\\e\\f\\1\end{aligned}} \right)\)
See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free