Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Question: Is \(\lambda = 3\) an eigenvalue of \(\left( {\begin{array}{*{20}{c}}1&2&2\\3&{ - 2}&1\\0&1&1\end{array}} \right)\)? If so, find one corresponding eigenvector.

Short Answer

Expert verified

Yes, \(\lambda = 3\) is the eigenvalue of the given matrix \(\left( {\begin{array}{*{20}{c}}1&2&2\\3&{ - 2}&1\\0&1&1\end{array}} \right)\) and the eigenvector is \(\left( {\begin{array}{*{20}{c}}3\\2\\1\end{array}} \right)\).

Step by step solution

01

Definition of eigenvalue

Let \(\lambda \) is a scaler, \(A\) is an \(n \times n\) matrix and \({\bf{x}}\) is an eigenvector corresponding to \(\lambda \), \(\lambda \) is said to an eigenvalue of the matrix \(A\) if there exists a nontrivial solution \({\bf{x}}\) for \(A{\bf{x}} = \lambda {\bf{x}}\).

02

Determine whether \(\lambda  = 4\) is the eigenvalue of the given matrix

Denote the given matrix by \(A\).

\(A = \left( {\begin{array}{*{20}{c}}1&2&2\\3&{ - 2}&1\\0&1&1\end{array}} \right)\)

According to the definition of eigenvalue, \(\lambda = 3\) is the eigenvalue of the matrix \(A\), if satisfies the equation \(A{\bf{x}} = \lambda {\bf{x}}\).

Substitute \(\lambda = 3\) into \(A{\bf{x}} = \lambda {\bf{x}}\).

\(A{\bf{x}} = 3{\bf{x}}\)

The obtained equation is equivalent to \(\left( {A - 3I} \right){\bf{x}} = 0\), which is a homogeneous equation.

So, first, solve the matrix \(\left( {A - 3I} \right)\) by using \(A = \left( {\begin{array}{*{20}{c}}1&2&2\\3&{ - 2}&1\\0&1&1\end{array}} \right)\).

\(\begin{array}{c}\left( {A - 3I} \right) = \left( {\begin{array}{*{20}{c}}1&2&2\\3&{ - 2}&1\\0&1&1\end{array}} \right) - 3\left( {\begin{array}{*{20}{c}}1&0&0\\0&1&0\\0&0&1\end{array}} \right)\\ = \left( {\begin{array}{*{20}{c}}1&2&2\\3&{ - 2}&1\\0&1&1\end{array}} \right) - \left( {\begin{array}{*{20}{c}}3&0&0\\0&3&0\\0&0&3\end{array}} \right)\\ = \left( {\begin{array}{*{20}{c}}{ - 2}&2&2\\3&{ - 5}&1\\0&1&{ - 2}\end{array}} \right)\end{array}\)

It can be said that \(\lambda = 3\) will be the eigenvalue of the given matrix if \(\left( {A - 3I} \right)\) is invertible.

So, write the obtained matrix in the form of an augmented matrix, where for \(A{\bf{x}} = 0\), the augmented matrix given by \(\left( {\begin{array}{*{20}{c}}A&0\end{array}} \right)\).

\(\left( {\begin{array}{*{20}{c}}{ - 2}&2&2&0\\3&{ - 5}&1&0\\0&1&{ - 2}&0\end{array}} \right)\)

03

Find the row reduce echelon form 

Now, reduce the obtained matrix into row echelon form by using the row operations.

\(\begin{gathered} \hfill \left( {\begin{array}{*{20}{c}} { - 2}&2&2&0 \\ 3&{ - 5}&1&0 \\ 0&1&{ - 2}&0 \end{array}} \right)\underrightarrow {{R_1} \to - \frac{{{R_1}}}{2}}\left( {\begin{array}{*{20}{c}} 1&{ - 1}&{ - 1}&0 \\ 3&{ - 5}&1&0 \\ 0&1&{ - 2}&0 \end{array}} \right) \\ \hfill \underrightarrow {{R_2} \to {R_2} -3{R_1}}\left( {\begin{array}{*{20}{c}} 1&{ - 1}&{ - 1}&0 \\ 0&{ - 2}&4&0 \\ 0&1&{ -2}&0 \end{array}} \right) \\ \hfill \underrightarrow {{R_2} \to - \frac{{{R_2}}}{2}}\left( {\begin{array}{*{20}{c}} 1&{ - 1}&{ - 1}&0 \\ 0&1&{ - 2}&0 \\ 0&1&{ - 2}&0 \end{array}} \right) \\ \hfill \underrightarrow {{R_1} \to {R_1} + {R_2}}\left( {\begin{array}{*{20}{c}} 1&0&{ - 3}&0 \\ 0&1&{ - 2}&0 \\ 0&1&{ - 2}&0 \end{array}} \right) \\ \hfill \underrightarrow {{R_3} \to {R_3} - {R_2}}\left( {\begin{array}{*{20}{c}} 1&0&{ - 3}&0 \\ 0&1&{ - 2}&0 \\ 0&0&0&0 \end{array}} \right) \\ \end{gathered} \)

From the obtained matrix, it can be seen that \(\left( {A - 3I} \right){\bf{x}} = 0\) has a nontrivial solution, which does not need to find, but according to the definition of eigenvalue, if \(\left( {A - \lambda I} \right){\bf{x}} = 0\) has the nontrivial solution, then the scaler \(\lambda \) is the eigenvalue of the matrix \(A\). So \(\lambda = 3\) is the eigenvalue of the given matrix.

04

Find the eigenvector 

Write the obtained matrix in the form of equations.

\(\begin{array}{c}{x_1} - 3{x_3} = 0\\ - {x_2} - 2{x_3} = 0\\{x_3},{\rm{ free variable}}\end{array}\)

As \({x_3}\) is a free variable, let \({x_3} = 1\). Then find \({x_1}\), and \({x_2}\) by using \({x_3} = 1\).

\(\begin{array}{c}{x_1} = 3\\{x_2} = 2\end{array}\)

The eigenvector is given by \({\bf{x}} = \left( {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\\{{x_3}}\end{array}} \right)\). So, write the eigenvector by using the obtained values.

\({\bf{x}} = \left( {\begin{array}{*{20}{c}}3\\2\\1\end{array}} \right)\)

Hence, one of the corresponding eigenvectors is \({\bf{x}} = \left( {\begin{array}{*{20}{c}}3\\2\\1\end{array}} \right)\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question: In Exercises \({\bf{1}}\) and \({\bf{2}}\), let \(A = PD{P^{ - {\bf{1}}}}\) and compute \({A^{\bf{4}}}\).

1. \(P{\bf{ = }}\left( {\begin{array}{*{20}{c}}{\bf{5}}&{\bf{7}}\\{\bf{2}}&{\bf{3}}\end{array}} \right)\), \(D{\bf{ = }}\left( {\begin{array}{*{20}{c}}{\bf{2}}&{\bf{0}}\\{\bf{0}}&{\bf{1}}\end{array}} \right)\)

If \(p\left( t \right) = {c_0} + {c_1}t + {c_2}{t^2} + ...... + {c_n}{t^n}\), define \(p\left( A \right)\) to be the matrix formed by replacing each power of \(t\) in \(p\left( t \right)\)by the corresponding power of \(A\) (with \({A^0} = I\) ). That is,

\(p\left( t \right) = {c_0} + {c_1}I + {c_2}{I^2} + ...... + {c_n}{I^n}\)

Show that if \(\lambda \) is an eigenvalue of A, then one eigenvalue of \(p\left( A \right)\) is\(p\left( \lambda \right)\).

Question: Diagonalize the matrices in Exercises \({\bf{7--20}}\), if possible. The eigenvalues for Exercises \({\bf{11--16}}\) are as follows:\(\left( {{\bf{11}}} \right)\lambda {\bf{ = 1,2,3}}\); \(\left( {{\bf{12}}} \right)\lambda {\bf{ = 2,8}}\); \(\left( {{\bf{13}}} \right)\lambda {\bf{ = 5,1}}\); \(\left( {{\bf{14}}} \right)\lambda {\bf{ = 5,4}}\); \(\left( {{\bf{15}}} \right)\lambda {\bf{ = 3,1}}\); \(\left( {{\bf{16}}} \right)\lambda {\bf{ = 2,1}}\). For exercise \({\bf{18}}\), one eigenvalue is \(\lambda {\bf{ = 5}}\) and one eigenvector is \(\left( {{\bf{ - 2,}}\;{\bf{1,}}\;{\bf{2}}} \right)\).

9. \(\left( {\begin{array}{*{20}{c}}3&{ - 1}\\1&5\end{array}} \right)\)

Exercises 19–23 concern the polynomial \(p\left( t \right) = {a_{\bf{0}}} + {a_{\bf{1}}}t + ... + {a_{n - {\bf{1}}}}{t^{n - {\bf{1}}}} + {t^n}\) and \(n \times n\) matrix \({C_p}\) called the companion matrix of \(p\): \({C_p} = \left( {\begin{aligned}{*{20}{c}}{\bf{0}}&{\bf{1}}&{\bf{0}}&{...}&{\bf{0}}\\{\bf{0}}&{\bf{0}}&{\bf{1}}&{}&{\bf{0}}\\:&{}&{}&{}&:\\{\bf{0}}&{\bf{0}}&{\bf{0}}&{}&{\bf{1}}\\{ - {a_{\bf{0}}}}&{ - {a_{\bf{1}}}}&{ - {a_{\bf{2}}}}&{...}&{ - {a_{n - {\bf{1}}}}}\end{aligned}} \right)\).

20. Let \(p\left( t \right){\bf{ = }}\left( {t{\bf{ - 2}}} \right)\left( {t{\bf{ - 3}}} \right)\left( {t{\bf{ - 4}}} \right){\bf{ = - 24 + 26}}t{\bf{ - 9}}{t^{\bf{2}}}{\bf{ + }}{t^{\bf{3}}}\). Write the companion matrix for \(p\left( t \right)\), and use techniques from chapter \({\bf{3}}\) to find the characteristic polynomial.

Show that if \(A\) is diagonalizable, with all eigenvalues less than 1 in magnitude, then \({A^k}\) tends to the zero matrix as \(k \to \infty \). (Hint: Consider \({A^k}x\) where \(x\) represents any one of the columns of \(I\).)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free