Denote the given matrix by \(A\).
\(A = \left( {\begin{array}{*{20}{c}}3&0&{ - 1}\\2&3&1\\{ - 3}&4&5\end{array}} \right)\)
According to the definition of eigenvalue, \(\lambda = 4\) is the eigenvalue of the matrix \(A\), if satisfies the equation \(A{\bf{x}} = \lambda {\bf{x}}\).
Substitute \(\lambda = 4\) into \(A{\bf{x}} = \lambda {\bf{x}}\).
\(A{\bf{x}} = 4{\bf{x}}\)
The obtained equation equivalent to \(\left( {A - 4I} \right){\bf{x}} = 0\), which is a homogeneous equation.
So, first solve the matrix \(\left( {A - 4I} \right)\) by using \(A = \left( {\begin{array}{*{20}{c}}3&0&{ - 1}\\2&3&1\\{ - 3}&4&5\end{array}} \right)\).
\(\begin{array}{c}\left( {A - 4I} \right) = \left( {\begin{array}{*{20}{c}}3&0&{ - 1}\\2&3&1\\{ - 3}&4&5\end{array}} \right) - 4\left( {\begin{array}{*{20}{c}}1&0&0\\0&1&0\\0&0&1\end{array}} \right)\\ = \left( {\begin{array}{*{20}{c}}3&0&{ - 1}\\2&3&1\\{ - 3}&4&5\end{array}} \right) - \left( {\begin{array}{*{20}{c}}4&0&0\\0&4&0\\0&0&4\end{array}} \right)\\ = \left( {\begin{array}{*{20}{c}}{ - 1}&0&{ - 1}\\2&{ - 1}&1\\{ - 3}&4&1\end{array}} \right){\rm{ - - - - - - - }}\left( 1 \right)\end{array}\)
It can be said that \(\lambda = 4\) will be the eigenvalue of the given matrix if \(\left( {A - 4I} \right)\) is invertible.
So, write the obtained matrix in the form of an augmented matrix, where for \(A{\bf{x}} = 0\), the augmented matrix given by \(\left( {\begin{array}{*{20}{c}}A&0\end{array}} \right)\).
\(\left( {\begin{array}{*{20}{c}}{ - 1}&0&{ - 1}&0\\2&{ - 1}&1&0\\{ - 3}&4&1&0\end{array}} \right)\)