Chapter 5: Q7.6-28E (page 267)
Consider an invertiblen × n matrix A such that the zero state is a stable equilibrium of the dynamical system What can you say about the stability of the systems
Short Answer
The given value is unstable
Chapter 5: Q7.6-28E (page 267)
Consider an invertiblen × n matrix A such that the zero state is a stable equilibrium of the dynamical system What can you say about the stability of the systems
The given value is unstable
All the tools & learning materials you need for study success - in one app.
Get started for freeQuestion: For the matrices in Exercises 15-17, list the eigenvalues, repeated according to their multiplicities.
17. \(\left[ {\begin{array}{*{20}{c}}3&0&0&0&0\\- 5&1&0&0&0\\3&8&0&0&0\\0&- 7&2&1&0\\- 4&1&9&- 2&3\end{array}} \right]\)
Let \(A = \left( {\begin{aligned}{*{20}{c}}{.4}&{ - .3}\\{.4}&{1.2}\end{aligned}} \right)\). Explain why \({A^k}\) approaches \(\left( {\begin{aligned}{*{20}{c}}{ - .5}&{ - .75}\\1&{1.5}\end{aligned}} \right)\) as \(k \to \infty \).
Question: Diagonalize the matrices in Exercises \({\bf{7--20}}\), if possible. The eigenvalues for Exercises \({\bf{11--16}}\) are as follows:\(\left( {{\bf{11}}} \right)\lambda {\bf{ = 1,2,3}}\); \(\left( {{\bf{12}}} \right)\lambda {\bf{ = 2,8}}\); \(\left( {{\bf{13}}} \right)\lambda {\bf{ = 5,1}}\); \(\left( {{\bf{14}}} \right)\lambda {\bf{ = 5,4}}\); \(\left( {{\bf{15}}} \right)\lambda {\bf{ = 3,1}}\); \(\left( {{\bf{16}}} \right)\lambda {\bf{ = 2,1}}\). For exercise \({\bf{18}}\), one eigenvalue is \(\lambda {\bf{ = 5}}\) and one eigenvector is \(\left( {{\bf{ - 2,}}\;{\bf{1,}}\;{\bf{2}}} \right)\).
12. \(\left( {\begin{array}{*{20}{c}}{\bf{4}}&{\bf{2}}&{\bf{2}}\\{\bf{2}}&{\bf{4}}&{\bf{2}}\\{\bf{2}}&{\bf{2}}&{\bf{4}}\end{array}} \right)\)
Question: Find the characteristic polynomial and the eigenvalues of the matrices in Exercises 1-8.
5. \(\left[ {\begin{array}{*{20}{c}}2&1\\-1&4\end{array}} \right]\)
Question: Is \(\left( {\begin{array}{*{20}{c}}{ - 1 + \sqrt 2 }\\1\end{array}} \right)\) an eigenvalue of \(\left( {\begin{array}{*{20}{c}}2&1\\1&4\end{array}} \right)\)? If so, find the eigenvalue.
What do you think about this solution?
We value your feedback to improve our textbook solutions.