Chapter 5: Q7.6-22E (page 267)
For the matrix A, find real closed formulas for the trajectory where . Draw a rough sketch
Chapter 5: Q7.6-22E (page 267)
For the matrix A, find real closed formulas for the trajectory where . Draw a rough sketch
All the tools & learning materials you need for study success - in one app.
Get started for freeLet \(A = \left( {\begin{aligned}{*{20}{c}}{.4}&{ - .3}\\{.4}&{1.2}\end{aligned}} \right)\). Explain why \({A^k}\) approaches \(\left( {\begin{aligned}{*{20}{c}}{ - .5}&{ - .75}\\1&{1.5}\end{aligned}} \right)\) as \(k \to \infty \).
Question 20: Use a property of determinants to show that \(A\) and \({A^T}\) have the same characteristic polynomial.
In Exercises \({\bf{3}}\) and \({\bf{4}}\), use the factorization \(A = PD{P^{ - {\bf{1}}}}\) to compute \({A^k}\) where \(k\) represents an arbitrary positive integer.
4. \(\left( {\begin{array}{*{20}{c}}{ - 2}&{12}\\{ - 1}&5\end{array}} \right) = \left( {\begin{array}{*{20}{c}}3&4\\1&1\end{array}} \right)\left( {\begin{array}{*{20}{c}}2&0\\0&1\end{array}} \right)\left( {\begin{array}{*{20}{c}}{ - 1}&4\\1&{ - 3}\end{array}} \right)\)
M] In Exercises 19 and 20, find (a) the largest eigenvalue and (b) the eigenvalue closest to zero. In each case, set \[{{\bf{x}}_{\bf{0}}}{\bf{ = }}\left( {{\bf{1,0,0,0}}} \right)\] and carry out approximations until the approximating sequence seems accurate to four decimal places. Include the approximate eigenvector.
19.\[A{\bf{=}}\left[{\begin{array}{*{20}{c}}{{\bf{10}}}&{\bf{7}}&{\bf{8}}&{\bf{7}}\\{\bf{7}}&{\bf{5}}&{\bf{6}}&{\bf{5}}\\{\bf{8}}&{\bf{6}}&{{\bf{10}}}&{\bf{9}}\\{\bf{7}}&{\bf{5}}&{\bf{9}}&{{\bf{10}}}\end{array}} \right]\]
A common misconception is that if \(A\) has a strictly dominant eigenvalue, then, for any sufficiently large value of \(k\), the vector \({A^k}{\bf{x}}\) is approximately equal to an eigenvector of \(A\). For the three matrices below, study what happens to \({A^k}{\bf{x}}\) when \({\bf{x = }}\left( {{\bf{.5,}}{\bf{.5}}} \right)\), and try to draw general conclusions (for a \({\bf{2 \times 2}}\) matrix).
a. \(A{\bf{ = }}\left( {\begin{aligned}{ {20}{c}}{{\bf{.8}}}&{\bf{0}}\\{\bf{0}}&{{\bf{.2}}}\end{aligned}} \right)\) b. \(A{\bf{ = }}\left( {\begin{aligned}{ {20}{c}}{\bf{1}}&{\bf{0}}\\{\bf{0}}&{{\bf{.8}}}\end{aligned}} \right)\) c. \(A{\bf{ = }}\left( {\begin{aligned}{ {20}{c}}{\bf{8}}&{\bf{0}}\\{\bf{0}}&{\bf{2}}\end{aligned}} \right)\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.